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“It is not worth an intelligent man's time to be in the majority. By definition,
there are already enough people to do that.”
--- G. H. Hardy (1877-1947)
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Ludwig Boltzmann
1844-1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
classical thermodynamics where it
quantifies the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = kInW in which W represents the
number of possible microstates in a macrostate, and
k ~ 1.38 x 10~** (in units of Joules per Kelvin) is
known as Boltzmann's constant. Boltzmann's ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn't fully appreciate Boltzmann's argu-
_ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs._The continued attacks on his work
lead to bouts of depression, and eventually he com-
_mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = kIn W is carved on
Boltzmann's tombstone.
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pry= Frank Rosenblatt

1928-1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built
special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt's work was

itici i ' , whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
In widespread use, with examples In areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.
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Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data

John Lafferty'*
Andrew McCallum*'
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Abstract

Conventional n-best reranking techmques of-

ten suffer from the himuited scope of the n-
best list. which rules out many potentially
good altematives. We instead propose forest
reranking. a method that reranks a packed for-

est of exponentially many parses. Since ex-
act inference is intractable with non-local fea-
tures. we present an approximate algorithm in-

spired by forest rescoring that makes discrim-
bank. Our final result. an F-score of 91.7. out-
performs both 50-best and 100-best reranking
baselines. and 1s better than any previously re-

ported svstems tramned on the Treebank.
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Improving Tree-to-Tree Translation with Pecked Forests

Yang Liu snd Yajusn L snd Qun Liv
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Approaches to syntax-based statistical machine
translation make use of parallel data with syntactic
annotations, either in the form of phrase structure
trees or dependency trees. They can be roughly
divided into three categories: string-to-tree mod-
els (e.g., (Galley et al., 2006; Marcu et al., 2006;
Shen et al., 2008)), tree-to-string models (e.g.,
(Liu et al., 2006; Huang et al., 2006)), and tree-to-
tree models (e.g., (Eisner, 2003; Ding and Palmer,
2005; Cowan et al., 2006; Zhang et al., 2008)).
By modeling the syntax of both source and tar-
get languages, tree-to-tree approaches have the po-
tential benefit of providing rules linguistically bet-
ter motivated. However, while string-to-tree and
tree-to-string models demonstrate promising re-
sults in empirical evaluations, tree-to-tree models
have still been underachieving.
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We believe that tree-to-tree models face two
major challenges. First, tree-to-tree models are
more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
running automatic parsers on a parallel corpus.
As the amount and domain of the data used to
train parsers are relatively limited, parsers will
inevitably output ill-formed trees when handling
real-world text. Guided by such noisy syntactic in-
formation, syntax-based models that rely on 1-best
parses are prone to leam noisy translation rules
in training phase and produce degenerate trans-
lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
to-tree models that use syntax on both sides.

Second, tree-to-tree rules provide poorer rule
coverage. As a tree-to-tree rule requires that there
must be trees on both sides, tree-to-tree mod-
els lose a larger amount of linguistically unmoti-
vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-
tion quality dramatically (Marcu et al., 2006; Liu
et al.,, 2007; DeNeefe et al., 2007; Zhang et al.,
2008).
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Compactly encoding exponentially many
parses, packed forests prove to be an excellent
fit for alleviating the above two problems (Mi et
al., 2008; Mi and Huang, 2008). In this paper,
we propose a forest-based tree-to-tree model. To
learn STSG rules from aligned forest pairs, we in-
troduce a series of notions for identifying minimal
tree-to-tree rules. Our decoder first converts the
source forest to a translation forest and then finds
the best derivation that has the source yield of one
source tree in the forest. Comparable to Moses,
our forest-based tree-to-tree model achieves an
absolute improvement of 3.6 BLEU points over
conventional tree-based model.
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The need to segment and label sequences arises in many

different probléms in several scientific fields. Hidden
Markov models (HMMs) and stochastic grammars are well
understood and widely used probabilistic models for such
prﬁblems. In computalional biologx, HMMs and stochas-
tic grammars have been successfully used to align bio-
logical sequences, find sequences homologous to a known
evolutionary family, and analyze RNA secondary structure
(Durbin et al., 1998). In computational linguistics and
computer science, HMMs and stochastic grammars have
been applied to a wide variety of problems in text and
speech processing, including topic segmentation, part-of-
speech (POS) tagging, information extraction, and syntac-
tic disambiguation (Manning & Schiitze, 1999).
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We believe that 1t 1s important to make available

one hand. phrases have been proven to be a simple
and powerful mechanism for machine translation.
They excel at capturing translations of short idioms,
providing local re-orderning decisions. and mcorpo-
rating context mnformation straightforwardly. Chi-
ang (2005) shows significant improvement by keep-
g the strengths of phrases while incorporating syn-
tax into statistical translation. On the other hand.
the performance of linguistically syntax-based mod-
els can be hindered by making use of only syntac-
tic phrase pawrs. Studies reveal that lingwstically
syntax-based models are sensitive to syntactic anal-
ysis (Quurk and Corston-Oliver. 2006). which 1s still
not reliable enough to handle real-world texts due to
limited size and domain of traming data.



Finding word alignments between parallel texts,

however, 1s still far from a trivial work due to the di-
versity of natural languages. For example, the align-
ment of words within idiomatic expressions, free
translations, and missing content or function words
is problematic. When two languages widely differ
in word order, finding word alignments is especially
hard. Therefore, it 1s necessary to incorporate all
useful linguistic information to alleviate these prob-
lems.

Tiedemann (2003) introduced a word alignment
approach based on combination of association clues.
Clues combination is done by disjunction of single
clues, which are defined as probabilities of associa-
tions. The crucial assumption of clue combination
that clues are independent of each other, however,
is not always true. Och and Ney (2003) proposed

A
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Forest Reranking: Discriminative Parsing with Non-Local Features'
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Abstract

Conventional n-best reranking technigues of-
ten suffer from the limited scope of the n-
best list, which rules out many potentially
good alternatives. We instead propose forest
reranking, a method that reranks a packed for-
est of exponentially many parses. Since ox-
act inference is intractable with non-local fea-
tures, we present an approximate algorthm in-
spired by forest rescoring that makes discrim-
inative training practical over the whole Tree-
bank. Our final result, an F-score of 91.7, out-
performs both $0-best and 100-best reranking
basclines, and is better than any previously re-
ported systems trained on the Treebank.

1 Introduction

Discriminative reranking has become a popular
technique for many NLP problems, in particular,
parsing (Collins, 2000) and machine translation
(Shen et al., 2005). Typically, this method first gen-
erates a list of top-n candidates from a baseline sys-
tem, and then reranks this n-best list with arbitrary
features that are not computable or intractable to

local  non-local
only at the root
N/A
an-the-fly

conventional reranking
DP-based discrim, parsing | exact
this work: forest-reranking | exact

Table 1: Comparison of various approaches for in-
corporating local and non-local features.

sentence length. As a result, we often see very few
variations among the n-best trees, for example, 50-
best trees typically just represent a combination of 5
to & binary ambiguities (since 2% < 50 < 29),
Alternatively, discriminative parsing is tractable
with exact and efficient search based on dynamic
programming (DP) if all features are restricted to be
local, that is, only looking at a local window within
the factored search space (Taskar et al., 2004; Mc-
Donald et al., 2005). However, we miss the benefits
of non-local features that are not representable here.
Ideally, we would wish to combine the merits of
both approaches, where an efficient inference algo-
rithm could integrate both local and non-local fea-
tures. Unfortunately, exact search is intractable (at
least in theory) for features with unbounded scope.
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coding phase. ! Based on max-translation decod-
mg and max-denivanon decoding used m conven-
tional individual decoders {Section 2) we go fur-
ther to develop a joinr decoder that integrates mul-
tiple models on a firm basis:

e Structuring the search space of each model
as a translation Inpergraph (Section 3.1).
our joint decoder packs individual translation
hypergraphs together by merging nodes that
have identical partial translations (Section
3.2). Although such rranslation-level combi-

nation will not produce new translations. it

does change the way of selecting promising

candidates.

e Two models could even share denvations
with each other if they produce the same
structures on the target side (Section 3 3).
which we refer to as derivation-level com-
binarion. This method enlarges the search
space by allowing for mixing different types
of translation rules within one derivation.

e As multiple derivations are used for finding
optimal translations. we extend the minimum
error rate training (MERT) algorithm (Och.
2003) to mne feature weights with respect
to BLEU score for max-translation decoding

(Section 4'.:.
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Methodology (ZiEliF)

We believe that offering more candidate align-
ments to extracting translation mules might help
improve translation quality. Instead of using n-
best lists (Venugopal et al.. 2008). we propose a
new structure called weighred alienmenr marrix.
We use an example to illustrate our i1dea. Fig-
ure 2(a) and I-figure 2(b) show two alhignments of
a Chinese-Englhish sentence pair. We observe that
some links (e.g.. (1.4) corresponding to the word

CTHEETY - E - B CAOTMOTITY - E - - Ty i IFP (Ll LN
W . s s s T = [0 jo. g0 do
China & - = China & = - China .fo [o o
of = W = = iwf - ol Ji0 FOLER O ND.W
development - dlevedopment - dlewelopeent [0 o [0 |8
the - . .« . the . .« .« . the o [o Jo [o
:E¥9 2 %92 229 2
g =& 3 g 23 g =3
= = -
mh 1] i
Frgure 2: {a) One aligmment of a senlence pam. (b) another aligmment of the same senlence pamr. ()

the resultmg weighted alignmient matnx that takes the two alignments as samples, of whch the notal
protatalities are 0.6 and 0.4, respectively.

pair (“zhongguo™. “China)) occur 1 both ahgn-
ments, some links (e.g.. (2.3) corresponding to the
word pair (“de”."of")) occur only in one align-
ment, and some links (e.g.. (1.1) cormresponding
to the word pair (“zhongguo™. “the™)) do not oc-
cur. Innutively. we can estimate how well two
words are aligned by calculating its relative fre-
quency. which is the probability sum of align-
ments i which the link occurs divided by the
probability sum of all possible alignments. Sup-
pose that the probabilines of the two alignments 1n
Figures 2(a) and 2(b) are 0.6 and 0.4. respectively.
We can estimate the relative frequencies for every
word pair and obtain a weighted matnx shown 1n
Figure 2(c). JTherefore each word pair is associ-
ated with a probability to mdicate how well they
are aligned. For example. in Figure 2(c). we say
that the word pair (“zhongguo™. “China™) 1s def-
initely aligned, (“zhongeguo™. “the™) is definitely
unaligned, and (“de”. “of") has a 60% chance to
get aligned.

Formally. a weighted alignment matrix m 1s a
J > I matrix. in which each element stores a /ink
probability pm,m(j.i) to indicate how well f; and
e; are aligned. Cuwrrently. we estumate link proba-
bilities from an n-best list by calculating relative
frequencies:
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We first used the validation sets to find the optimal setting of our approach: noisy

generation, the value of n, feature group, and training corpus size.

Table 2 shows the results of different noise generation strategies: randomly shuf-
fling, inserting, replacing, and deleting words. We find shuffling source and target
words randomly consistently yields the best results. One possible reason is that the
translation probability product feature (Liu, Liu, and Lin, 2010) derived from GIZA++
suffices to evaluate lexical choices accurately. It is more important to guide the aligner
to model the structural divergence by changing word orders randomly.

Table 3 gives the results of different values of sample size n on the validation sets.
We find that increasing n does not lead to significant improvements. This might result
from the high concentration property of log-linear models. Therefore, we simply set
n = 1 in the following experiments.

Table 4 shows the effect of adding non-local features. As most structural diver-
gence between natural languages are non-local, including non-local features leads to
significant improvements for both French-English and Chinese-English. As a result,
we used all 16 features in the following experiments.

Table 5 gives our final result on the test sets. Our approach outperforms all unsu-
pervised aligners significantly statistically (p < 0.01) except for the Berkeley aligner
on the French-English data. The margins on Chinese-English are generally much larger
than French-English because Chinese and English are distantly related and exhibit
more non-local structural divergence. Vigne used the same features as our system but
was trained in a supervised way. Its results can be treated as the upper bounds that our
method can potentially approach.
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Figure 3. Plots of 2 x 2 error rates for HMMs, CRFs, and MEMMs on randomly generated synthetic data sets, as described in Section 5 2.
As the data becomes “more second order,” the error rates of the test models increase. As shown in the left plot, the CRF typically
significantly outperforms the MEMM The center plot shows that the HMM outperforms the MEMM. In the right plot, each open square
represents a data set with « < 3, and a solid circle indicates a data set with a > L. The plot shows that when the data is mostly second
order (o > 1 5 ). the dm,rln'1111.1t1'«'{:l".r trained CRF typically outperforms the HMM These experiments are not designed to demonstrate
the dd\“d]‘l[dLEH of the additional representational power of CRFs and MEMMs relative to HMMs.
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Related work

2 Related Work

The CVG is inspired by two lines of research:

Enriching PCFG parsers through more diverse
sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Improving Discrete Syntactic Representations
As mentioned in the introduction, there are several
approaches to improving discrete representations
for parsing. Klein and Manning (2003a) use
manual feature engineering, while Petrov et
al. (2006) use a learning algorithm that splits
and merges the syntactic categories in order
to maximize likelihood on the treebank. Their
approach splits categories into several dozen
subcategories. Another approach is lexicalized
parsers (Collins, 2003; Charniak, 2000) that
describe each category with a lexical item, usually
the head word. More recently, Hall and Klein

Deep Learning and Recursive Deep Learning

Early attempts at using neural networks to de-
scribe phrases include Elman (1991), who used re-
current neural networks to create representations
of sentences from a simple toy grammar and to
analyze the linguistic expressiveness of the re-
sulting representations. Words were represented
as one-on vectors, which was feasible since the
grammar only included a handful of words. Col-
lobert and Weston (2008) showed that neural net-
works can perform well on sequence labeling lan-
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in a factored parser. We extend the above ideas

from discrete representations to richer continuous
ones. The CVG can be seen as factoring discrete
and continuous parsing in one model. Another
different approach to the above generative models
is to learn discriminative parsers using many well
designed features (Taskar et al., 2004; Finkel et
al., 2008). We also borrow ideas from this line of
research in that our parser combines the generative
PCFG model with discriminatively learned RNNs.

This paper uses several ideas of (Socher et al.,
2011b). The main differences are (i) the dual
representation of nodes as discrete categories and
vectors, (ii) the combination with a PCFG, and
(iii) the syntactic untying of weights based on
child categories. We directly compare models with
fully tied and untied weights. Another work that
represents phrases with a dual discrete-continuous
representation is (Kartsaklis et al., 2012).
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Appendix A: Table of Notation
f
f
f
J
]
fi
fo

Appendix B: Using the IBM Models as Feature Functions

source sentence

sequence of source sentences: fy,...,f;, ..., fs
source word

length of f

positioninf,j=1,2,...,]

the j-th word in f

empty cept on the source side

In this article, we use IBM Models 14 as feature functions by taking the logarithm of the
models themselves rather than the sub-models just for simplicity. It is easy to separate
each sub-model as a feature as suggested by Fraser and Marcu (2006). We distinguish
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research commumnities. To accelerate the

development of Chinese  language
processing technology, under a grant from
863 Program. Institute of Computing
Technology of Chmese Academy of
Sciences took part in building Corpora
Resources of 863 Program together with
Institute  of Automation of Chinese
Academy of Sciences. Tsinghua University,
Peking University. Benyimng HanWang
Technology Corporation. Anhw USTC
IFLYTEK Corporation, Graduate School of
the Chinese Academy of Sciences and
Insutute of Linguistics of Chinese Academy
of Social Sciences.

To advance the state of the art of
Chinese language processing
technology, many institutions in China
took part in building the Corpora
Resources under the grant from the
863 Program. These institutions include
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The whole process of finding fuzzy-matched word pairs
and computing their similarity is demonstrated in
detail. More importantly, the performance of BLEU is
significantly improved by integrating fuzzy matching.

\/

We demonstrate how to find fuzzy-matched word pairs
and compute their similarities in detail. More importantly,
integrating fuzzy matching significantly improved the
translation performance in terms of BLEU.
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In this step, we want to induce an alignhment between
words and predicates. The alighment can give a roughly

mapping between words and the predicates that express
their meanings, so it would be a useful constraint for rule
extraction and reduce the searching space.




SEEREE (S +OiEH)

In this step, we want to induce an alignment between
words and predicates. The alighment can give a roughly
mapping between words and the predicates that express
their meanings, so it would be a useful constraint for rule
extraction and reduce the searching space.

v

This step induces an alignment between words and predicates.
Reflecting a rough mapping between natural languages and
logic, such alignments impose linguistically motivated
constraints on the search space and improve the efficiency of

rule extraction.
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A FBI agent or An FBI agent?
A FIFA officer or An FIFA officer?
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The statistical translation models that try to capture
the recursive structures of the language over the last
several years.

In the experiments on the Chinese-English translation,
we find that the model chooses to build the structures
that are more syntactic.
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=& statistical translation models that try to capture
the recursive structures of #se language over the last
several years.

In #e experiments on #e Chinese-English translation,
we find that the model chooses to build #r structures

that are more syntactic.
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Az —argmm{z E(r,,a(f,, e AN ]}} (7)

A
A 1

wmm{ZZL[l a. r)o(alf,. e, }\”} 1,.;]} (8)

AM s=1 k=1

* where a(f,, e,: A\}) is the best candidate alignment produced by the linear model:

a(f,., e,; Al :l—dlﬁl"d\{z A (£, €4 1}} (9)

m=1

The basic idea of MERT is to optimize only one parameter (i.e., feature weight)
each time and keep all other parameters fixed. This process runs iteratively over M
parameters until it cannot further reduce the loss on the training corpus.
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The need to segment and label sequences arises in many
different problems in several scientific fields. Hidden
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The need to segment and label sequences arises in many
different problems in several scientific fields. Hidden

Al  the need to ... arises in ... problems (fields)

1= )

The need to learn latent-variable models from
unlabeled data arises in many NLP problems.
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Maximizing thellikelihood the training data

(A) In (B) on (c) of
4

Go 8[(3 "likelihood in the training data” ] a |

Web News Videos Images Shopping More ~ Search tools

4 results (0.47 seconds)

[PDF] Pruning of Hidden Markov Model with Optimal Brain ...
www.cse.ust.hk/...the... ~ Hong Kong University of Science and Technology
by CK Wah - 2003 - Cited by 5 - Related articles

that the decrease of the total log-likelihood in the training data is minimal. It was
expected that the pruned HMM will lead to a modification on transitions and, ...
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Maximizing thellikelihood the training data

(A) In (B) on (c) of

4 5,680
Go gle  “iikelihood on the training data” q Q |

Web News Videos Images Shopping More - Search tools

About 5,680 results (0.23 seconds)

Advances in Neural Information Processing Systems 9: ...
books.google.com/books?isbn=0262100657

Michael C. Mozer, Michael |. Jordan, Thomas Petsche - 1997 - Computers

Penalized likelihood approaches are popular, where the log-likelihood on the training
data is penalized by the subtraction of a complexity term. A more general ...
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Maximizing thellikelihood the training data

(A) In (B) on (c) of
4 5,680 198,000

Go gle "likelihood of the training data" S n

Web News Images Shopping Videos More ~ Search tools

About 198,000 results (0.31 seconds)

Restricted Boltzmann Machines (RBM) — DeeplLearning 0.1 ...

deeplearming.net/tutorial/rom.html -
An energy-based model can be learnt by performing (stochastic) gradient descent on the
empirical negative log-likelihood of the training data. As for the logistic ...
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