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Background - Topic

Background

Time Oriented Application Oriented

Topic

X Concept, Characteristics, Application, Importance, and etc.



Background - Topic

Clustering i1s a widely used technique in identifying co-
expressed gene patterns from microarray data. Traditional
“global” clustering algorithms either group genes according
to their expression under all conditions or group conditions
based on the expression of all genes) However, in cellular
processes. subsets of genes are usually co-expressed only
under certain experimental conditions, but behave almost
independently under other conditions. |Hence. |discovering
such local co-expressed patterns may be the key to uncov-
ering many genetic pathways that are not apparent other-
wise. [Therefore] researchers are motivated to extract a sub-

set of genes whose expression levels rise and fall coherently
under a subset of conditions, that is, they exhibit fluctua-
tion of a similar shape when conditions change, which is
called “consistent trends”. Such patterns are referred to as
“biclusters”. As highlighted in [9], discovery of biclusters
s essential in revealing the significant connections in gene
regulatory networks.



Background - Topic

REQUENT pattern (FP) mining [1], [5], [13], [9] is a

fundamental step to several essential data mining tasks,
including association analysis, correlation analysis, caus-
ality_analysis, association-based classification, and cluster-
ing. [However, |the number of FPs can be too large tor them
to be of practical use, especially for dense data sets and /or
when low support thresholds are used. To reduce the
number of FPs, frequent closed pattern (FCP) mining has

data drmh sis

been introduced an or
in many domains. In pdl’l‘lf_uldl’ FCPs mined from gene
expression data have been used to build association rules to
uncover gene regulation networks [3], [16] and to build

classifiers for diagnosis [17].

successruuy adopite
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Literature Review =2 Motivation

3¢ Notable Method Summarization (focus on

nearest neighbors)
3 Comments (weakness)

3¢ Motivation (against the weakness)



existing algorithms jcan |generate biclusters with

similar trends. they are}limited|in several ways. First. these
] . i |

schemes typically employ a similarity score (e.g.. MSR and

pScore) to determine the quality of biclusters. [However,

most of these similarity scores do not adequately capture
the trend consistency of biclusters. In other words, patterns
with higher MSR score or pScore could have more consis-
tent trends than those with lower MSR score or pScore. Sgc-
ond, these algorithms usually generate biclusters based on
selected “seeds™ that cover only a small part of the whole
dataset.|As suchfinteresting patterns may be missed and re-
sult in loss of relevant information. Third. the seed improve-
ment process follows the hill-climbing paradigm and can in-
volve significant amount of computation. This oftenjresults
irj a long processing time before any acceptable result 1s re-
turned to the user. Finally, very few inter-bicluster relation-
ships are deliﬁ-'eredm-'ious framework (e.g.. which bi-
clusters are closer to each other. which biclusters are remote
from each other, and which bicluster i1s superset/subset of
another bicluster). A biclustering algorithm that (bi)clusters
a gene expression dataset and provides a graphical reore-
sentation of the inter-bicluster relationships would be more
favored by the biologists. To the best of our knowledge, no
previous work has established a clear relationship between
biclusters.




Literature Review =2 Motivation

Some m:tablu FCP mining schemes include CLOSET+
[10], CHARM [12] CARPENTER [6], REPT [3], and D-miner

[2]. these algorithms T“'bmmq to perform
well in their respective context, fit turns out that|they are not
suited for applications that involve data sets with very high

density, where nearly 50 percent or more of the cells contain

ones (as we shall see, all the real data sets that we used in
the performance study are dense): they are either very
inefficient (that is, take hours or even days to produce
patterns, even with high minimum support threshold) or
may even fail (that is, run out of memory)|In addition| these
methods are nonprogressive; that is, the users are swarmed

with all the answer patterns (after a very long wait) at a
single time when the algorithm completes.
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Algorithm Overview & Contribution

3 Method Definition
3¢ Principle Description (How to make it better?)

¥ Contribution



Algorithm Overview & Contribution

In this paper. we propose an efficient top-down hierar-
chical blﬂlllStEllIlE ’11'3011t11111 called Quu:k Hleralchlcal Bi-

QHB continuously partitions the whole dataset into subsets
such that genes with more consistent trends during con-
dition transitions are grouped together while genes witl
inconsistent trends are set apart. To measure the trenc;I
consistency of a bicluster. we define a new score that re-
flects the similarity of fluctuating degrees in the changing
trends. Compared with previous biclustering models, we

have made five main contributions:

Efficiency. QHB adopts a partition based refinement that
can simultaneously processed several rows/columns. This is
much more efficient than existing techniques.

Inter-bicluster Relationships. QHB provides a very
clear hierarchical inter-bicluster relationships. Such graphi-
cal representation of the relationships among biclusters pro-
vides more valuable knowledge to the biologists.



Algorithm Overview & Contribution

In this paper, we tackle the problem of mining ECC from
BM’EEH)M contributions are as follows. |First,| we
introduce the 1mm}fcene it. | See-
ond, we propose two approaches to mine FCCs. The hrst
approach is a three-phase framework, called Representative
Slice Mining algorithm (RSM) that exploits 2D FCP mining
algorithms to mine FCCs. The basic idea is to transform a
3D dataset into a set of 2D datasets, mine the 2D datasets
nsing an existing 2D FCP mining algorithm. and then prune
away any frequent cubes that are not closed. The second
method 1s a novel scheme, called CubeMiner_that operates
directly on the 3D dataset to mine FCCs. | Third] we also
show how RSM and _CubeMiner can be easily extended to
exploit parallelism. Finally] we have implemented RSM and
CubeMiner, and conducted experiments on both real and
synthetic datasets. To our knowledge, there has been no
prior work that mine FCCs.




Contributions

3¢ New Concept
3% New Model

3 New Algorithm (More Efficient, Less Memory,

Parallelism and etc.)

3¢ New Result (Significant in Application Domain)
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Experiment Overview
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Implementation

Data

Result

We have ill'lElL‘lTlL‘l"ltL‘d C-Miner and B-Miner and experi-
mented with synthetic data sets and three real microarray
. |

data sets. Qur results show that our C-Miner and B-Miner are

superior to CLOSET+, REPT, and D-Miner on dense data

sets. We also report results on parallul versions of our
pmpuz—;ud schemes.
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Roadmap

The rest of this paper is organized as follows: In the
next_section, we summarize some previous works. In
Section 3 we present some preliminaries. Qechion 4
presents the proposed C-Miner and B-Miner algorithms.
In Section 5, we report experimental results obtained from
comparing C-Miner and B-Miner against some existing

schemes. Finallv, we conclude in Section 6.

The rest of this paper is organized as follows. Section 2
reviews some related works. In Section 3, we Drlm
fine the FCC mining problem. Section 4 presents the pro-
posed RSM framework, while Section 5 presents the pro-
posed CubeMiner algorithm. In Section 6, we show how
R5M and CubeMiner can be extem;}lﬂit parallelism.
Section 7 reports experimental results on RSM and Cube-
Miner, and finally, we conclude in Section 8.
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Related Work

¥ Detail some notable works
3 Give comments individually or by group
¥ Summarize irrelevant works in a few words

% Head and tail

In time or advancing order

Put to the bottom the methods to be compared




Related Work

Traditionally, frequent pattern mining algorithms [1, 18,
14] typically generate a large number ol patterns and many
of them are redundant. To reduce the number of frequent
patterns, frequent closed p&tteru (FCP) mining algorithms
have been proposed. . uses a breadth-first search
to find FCPs. CLOSET [11] and CLOSET+ |1L1| adopt a
depth-first, feature enumeration strategy. CLOSET uses a
-muern tree for a compressed representation of the
dataset. CLOSET4., an enhanced version of CLOSET, uses
a hyvbrid tree-projection method to build conditional pro-
jected table in two different ways according to the density
of the dataset. Both MAFIA [4] and CHARM [17] use a
vertical representation of the datasets. MAFIA adopts a
compressed vertical bitmap structure while CHARM enu-
merates closed itemsets using a dual itemset-tidset search
tree and adopts the Diffset technique to reduce the size
of the intermediate tidsets. Since these methods adopt a
teature enumeration strategy, they cannot efficiently handle
datasets with a large number of features (columns).




Related Work

dle “large columns small rows” dataset In [8], the scheme

CARPENTER combines depth-first, row enumeration strat-
egy with some efficient search pruning techniques. In [9],
COBEBLER dwvnamically switches between feature enumer-

ation and row enumeration depending on the data charac-
teristic in the process of mining. Both schemes, however,

cannot handle dense datasets. In [3], D-miner was proposed
to identify closed sets of attributes {or items) for dense and
highly-correlated boolean contexts. D-miner generates and
employs a set of cutters (containing “0” information) to di-
vide the whole dataset into small dense spaces.

Although the above-mentioned algorithms perform well
in their respective application domains in 2D datasets, they
lcannot mine FCCs in 3D context.




Related Work (supplement)

3% Add the head

e There are plenty of covert channel methods in literature.
Here, we will only review some notable work due to space

limitation.

e Now (Here/ In this section), we will review some notable

methods (previous work)......



Related Work (supplement)

3% Add the tail

patterns as a result of running out of memory. Since
CLOSET+ [10], REPT [3], and D-Miner [2] represent the
state-of-the-art efficient FCP mining algorithms tor rela-
vely dense microarray data, we conduct experiments to
compare our proposed schemes against them.
——

Hence, we are motivated to......
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3¢ Applying to paper with lots of definitions
3 Three Components:

e Overview

e Definitions

e Problem Definition



We shall first define some notations that we will be usin
throughout this paper, and then give the problem descrip-

tion.
Let R={ry,ra2,..., rn} denote a set of rows, €' = {¢y, c2,

y _Cm} denote a set of columns, and H = {hi,ha,... hi}
denote a set of heights. Then a three-dimension dataset can
be represented by a [ xn xm binary matrix O = Hx Rx (' =
{Okag T with k € [1,1], i € [1,n] and j € [1,m]. Each cell
Okeij - the relationship among height hg. row
ri, and column ¢;. The value true (i.e., *1") denotes the
relationship that any two dimensions are “simultaneously

contained (S-contained)” in the third one.

Definition 3.1 Height Support Set and H-Support:
Given a set of rows R C R and a set of columns C' C C, the
“mazimal set of heights that simultaneously contain R’ and
C'" is defined as the Height Support Set H(R' = C') € H.
The number o] heights in H(R' x C") is defined as the H-
Support of (R' % C"), denoted as |[H(R' x C")|. Forexample,
in Table 1, let R' = {r1.,72} and — {e1, 2,03}, then
H {Rj x (') = {h.l, hg} since both hy and hs simultaneously
contain {ry, 72} and {c1, 2, ¢z}, and no other heights contain
them simultaneously.
" Problem Definition: Given a three-dimension dataset
(2, our problem is to discover all frequent closed cubes with
respect to the user support thresholds minH, minR., and
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Algorithm (Method)

¥ Overview
3¢ Preliminaries (Definitions, Model Description)
3¢ Put the whole idea in Phases or Steps

3¢ Emphases which phase/step/part makes the

algorithm outstanding

3¢ Use running examples, figures, tables,

pseudo-code......

3 Supplementary (limitations, suggestions, future work...)



Algorithm (Overview)

In this section, we first Ermunt the basic framework for
compressed hierarchical FCP mining. We_then present the
two schemes, C-Miner and B-Miner, that are based on the
tramework. Finally, we show how the framework can be

L‘az-sily adaptua fur para“ul FCP mining.

In this section, we present the proposed QHB frame-
work. The QHB algorithm comprises 3 phases. In the
first phase. the ofiginal matrix 1s transformed wmto a binary
matrix that captures the changing trend of the gene expres-
sion value between each consecutive conditions. This trend
could either be a rising trend, a falling trend or one that
is considered to have no significant change. In the second

phase. an iterative partitioning procedure is appilea fo the



Algorithm (Main Content)

Y Phase 1
e Step 1
e Step 2

Y% Phase 2
e In the 1st step

e In the 2nd step

Y% Phase 3



Algorithm (Try to Make It Clear)

Alice and Bob would take the following five steps to transmit the secret message:

Step 1: Alice and Bob communicate normally. They both record the message
lengths sent by Alice, and make the record as Reference.

Step 2: Alice and Bob select a length / from the Reference by the same random
algorithm.

Step 3: In the ith sending, Alice sends to Bob a message of length /next =[+SUM.i.
The Reference is updated by appending /next.

Step 4: Bob decodes the ith message into Wi by subtracting / from /next.

In our method, the Step 2 and 3 ensure that each sending message would
learn from the normal network traffic (Reference) so that messages from
our channel have similar length distribution as normal network messages.
To better resist the detection, our scheme could be further enhanced
through the way that Alice periodically sends to Bob redundant normal
network messages during the transmission.
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Experimental Results

3 Overview: tool, data, methods to compare

3¢ Data Description

3¢ Data Preprocessing

3 Compare against other algorithms (methods)

3¢ Parameter Studies (Optimization)



Experimental Results

Experimenting on the Clartnet dataset [9], we compared our scheme with
Girling’s[3] and Yao’s[8] models, and estimated the upper bound of our
model’s bandwidth.

4.1 Dataset

Clarknet dataset [S] contains the logs of 1.6 million HTTP queries from
two weeks. We take the 7239 queries from Client ‘piwebaSy.prodigy.com’
as the messages for our experiments. In each query, the average size of
transmitted message is 489 bytes (39 bytes message + 450 bytes header).



Experimental Results

4.3 Efficiency

In this group of experiments. we set max M F' D) = 0.15
and vary the minGene and minC'on thresholds and com-
pare the execution time of QHB against DBF. The execution
time for QHB includes processing all seeds while the exe-
cution time for DBF only includes processing the top 100
seeds ranked by the algorithm. However, compared with
DBFE, QHB 1s still much more efficient - while DBF takes
at least 1000 sec in all our experiments, QHB 1s no more
than 100 sec (figure not shown due to space constraint).
This 1s because QHB simultaneously groups several genes
and conditions at the same time and the grouping (subma-
trix partition) process is oriented by bins. This makes the
whole processing very efficient. However. while refining
the seeds. DBF tends to randomly try the row/column one
by one to decide which row/column to add. This process is
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Conclusion & Future Work

3 Summarize what we did in the paper

e Method
e Experimental Results

e Benefits (Application)

3% Future Work



Conclusion & Future Work

CONCLUSION

In this paper, we revisit the problem of analyzing gene expres-

Sion data for time-lagged gene co-regulation relationships.
We have presented a localized algorithm to idenfify the tume-
lagged gene clusters based on the concept of q -clusters. Genes
with a simular pattern over a subset of g consecufive fune
powmts (condifions) are grouped into the same g-cluster. In
this way, we can easily determune the co-regulations of genes
within each g-cluster and between g-clusters. We have experi-
mented on a real fime-series gene expression dataset and
comparad our method and results with the Event Method. Our
sfudy shows that our approach 1s efficient at detecting both
activation and mhibition time-lagged co-regulations, and our
results can draw relationships between both genes and gene
clusters and provide more detailed mformation. We believe
that our approach delivers valuable information and provides
an excellent tool that facilitates more detailed exploration for
gene network research.

cantly. As future research, we plan to study 3D association

rule analfysis and classiner based on frequent closed cubes.
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Abstract

Y% Motivation
e Topic Importance

e Literature Review: However, existing work...
3¢ Method: In this paper, we....
3¢ Experimental Results

X Application



Abstract

Mining biclusters that exhibit both consistent trends and
trends with similar degrees of fluctuations is vital to bioin-
formatics research. However, existing biclustering methods
are not very efficient and effective at mining such biclusters.
Moreover; few inter-bicluster relationships are delivered to
biologists. In this paper, we introduce a quick hierarchical
bfffﬂ&?ﬁ'iﬁWQHB} to efficiently mine biclusters
with both consistent trends and frends with similar degrees
of fluctuations. Our QHB produces not only biclusters but
also a hierarchical graph of inter-bicluster relationships.
We experimented with the Yeast dataset and compared OHB
aMng biclustering scheme, DBF. Our results
show that QHB identifies biclusters with better quality. In

“addition, OHB shows the relationships among biclusters.
Moreover, compared with DBF, OQHB is much more efficient
and offers users a progressive way of bicluster exploration.




Abstract VS Conclusion

ABSTRACT

Motivation: Analysis of gene expression data can provide
insights into the time-lagged co-regulation of genes/gene
clusters. However, existing methods such as the Event Method
and the Edge Detection Method are inefficient as they compare
only two genes at a time. More importantly, they neglect some
important information due to their scoring criterian. Ig _this
paper, we propose an efficient algorithm to identify time-lagged
co-regulated gene clusters. The algorithm facilitates localized
comparison and processes several genes simultaneously to
generate detailed and complete time-lagged information for
genes/gene clusters.

Results: We exeerimented with the time-series Yeast gene
dataset and compared our algorithm with the Event Method.
Curresults show that our algorithm is not only efficient, but also
JemEre hare 'elable and detailed information on time-lagged
co-regulation between genes/gene clusters.

CONCLUSION

In this paper, we revisit the problem of analyzing gene expres-

Sion data for time-lagged gene co-regulation relationships.
We have presented a localized algorithm to idenfify the tume-
lagged gene clusters based on the concept of q -clusters. Genes
with a simular pattern over a subset of g consecufive fune
powmts (condifions) are grouped into the same g-cluster. In
this way, we can easily determune the co-regulations of genes
within each g-cluster and between g-clusters. We have experi-
mented on a real fime-series gene expression dataset and
comparad our method and results with the Event Method. Our
sfudy shows that our approach 1s efficient at detecting both
activation and mhibition time-lagged co-regulations, and our
results can draw relationships between both genes and gene
clusters and provide more detailed mformation. We believe
that our approach delivers valuable information and provides
an excellent tool that facilitates more detailed exploration for
gene network research.
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