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Recovering Surface Normal and Arbitrary Images:
A Dual Regression Network for Photometric Stereo
Yakun Ju , Graduate Student Member, IEEE, Junyu Dong , Member, IEEE, and Sheng Chen , Fellow, IEEE

Abstract— Photometric stereo recovers three-dimensional (3D)
object surface normal from multiple images under different
illumination directions. Traditional photometric stereo methods
suffer from the problem of non-Lambertian surfaces with gen-
eral reflectance. By leveraging deep neural networks, learning-
based methods are capable of improving the surface normal
estimation under general non-Lambertian surfaces. These state-
of-the-art learning-based methods however do not associate
surface normal with reconstructed images and, therefore, they
cannot explore the beneficial effect of such association on the
estimation of the surface normal. In this paper, we specifically
exploit the positive impact of this association and propose a
novel dual regression network for both fine surface normals
and arbitrary reconstructed images in calibrated photometric
stereo. Our work unifies the 3D reconstruction and rendering
tasks in a deep learning framework, with the explorations
including: 1. generating specified reconstructed images under
arbitrary illumination directions, which provides more intuitive
perception of the reflectance and is extremely useful for visual
applications, such as virtual reality, and 2. our dual regression
scheme introduces an additional constraint on observed images
and reconstructed images, which forms a closed-loop to provide
additional supervision. Experiments show that our proposed
method achieves accurate reconstructed images under arbitrarily
specified illumination directions and it significantly outperforms
the state-of-the-art learning-based single regression methods in
calibrated photometric stereo.

Index Terms— Photometric stereo, surface normal estimation,
3D reconstruction, deep neural networks, dual regression.

I. INTRODUCTION

THREE dimensional (3D) shape recovery from images is
a fundamental problem in computer vision and graphics.

In 1980, Woodham [1] proposed the photometric stereo algo-
rithm to recover surface normal of 3D objects from varying
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light directions, which started a new research direction in this
field. Unfortunately, the early algorithms were limited to the
Lambertian reflectance model. Over the past four decades,
many methods were developed to address this problem by
applying outlier rejection technologies [2]–[4] or modeling
sophisticated reflectance [5]–[7].

Recently, inspired by the success of the deep learning frame-
work for various computer vision tasks, e.g., image retrieval
[8] and objects recognition [9], researchers have applied the
deep learning approach to photometric stereo [10]–[14]. The
latest works [15], [16] developed methods to learn the surface
normal under near-field illuminations. These learning-based
methods attempt to address the non-Lambertian reflectance
problem by utilizing the powerful learning ability of deep
neural networks. Despite improving the accuracy of the surface
normal, these existing learning-based methods mainly suffer
from two types of limitations. First, the existing deep learning-
based methods only focus on the surface normal of 3D objects
but ignoring the reconstructed images. However, accurate
reconstructed images under different illumination directions
intuitively show the texture and anisotropic reflectance prop-
erties of the surface, which is useful in visual applications, e.g.,
virtual reality, where the texture and material of the object are
as important as the 3D shape. Second, the previous learning-
based methods focus on the single surface normal constraint
without other supervision, while blindly increasing the com-
plexity of the learning-based model can hardly improve the
accuracy of non-Lambertian estimation, particularly for the
errors of the regions associated with cast shadows, speculari-
ties, and non-convex structure. To the authors’ best knowledge,
no deep-learning work to date has explored how to regress
to two dimensional (2D) reconstructed images in order to
further promote the accuracy of recovering the surface normal.
Indeed, in sophisticated traditional model-based photometric
stereo methods, the reconstruction loss is precisely used as
the objective function. To some extent, our approach combines
the objectives of learning and traditional algorithms, learning
to approximate the real rendering process instead of explicitly
resorting to an image formation model.

To overcome the aforementioned limitations as well as to
unify the 3D reconstruction and rendering tasks, we propose
a novel dual regression network for calibrated photometric
stereo, called DR-PSN for short, which combines the surface
normal constraint and reconstructed images constraint. In par-
ticular, we use the dual regression scheme to introduce an
additional constraint on reconstructed images to reduce the
potential space of the surface normal. Specifically, as shown
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Fig. 1. DR-PSN: The dual regression scheme, which contains a normal
regression stage for estimating the surface normal and a dual regression stage
to project the surface normal back to reconstructed images.

in Fig. 1, DR-PSN adopts a dual architecture, forming a
closed-loop to provide additional supervision. Our method
applies an effective channel max-pooling technique [13] in
the surface normal task to ensure an arbitrary number of
input images. Then in the dual regression task, we design
a shortcut to concatenate the shallower fused feature in the
normal regression task, which provides the materials infor-
mation. We also combine encoded lighting with features to
output arbitrary specified reconstructed images under different
illumination directions. We argue that the combined sur-
face normal, reflectance information, and illumination direc-
tions learn the imaging model, which is the inverse task of
surface normal estimation. Experimental results show that
the estimated surface normal under the proposed additional
reconstruction constraint and the closed-loop framework is
significantly more accurate than those obtained by traditional
photometric stereo algorithms and state-of-the-art learning-
based approaches. Moreover, our DR-PSN can generate recon-
structed images under arbitrarily specified illumination direc-
tions.

II. RELATED WORK

A. Photometric Stereo

Photometric stereo [1] aims at recovering the surface normal
of a 3D object from a set of images, captured under different
lighting directions with a fixed camera. To solve the limitation
on the general reflectance [17], [18], the approaches that
researchers developed to address this problem can be catego-
rized into traditional algorithms and learning-based methods.

1) Traditional Methods: Traditional photometric stereo
techniques are non-learning-based methods, and they aim to
solve the surface normal under unknown reflectance with
specularities and cast shadow. Following the survey paper
[19], we divide the traditional methods into three categories
as outlier rejection-based techniques, sophisticated reflectance
model-based techniques, and exemplar-based techniques.

Outlier rejection methods assume that the non-Lambertian
surface can be seen as local and sparse (specularity, shadow),
which can be discarded as outliers. Several outlier rejection
based photometric stereo algorithms have been proposed,
including the maximum-likelihood estimation [20], the low

rank scheme [21], [22], RANSAC (random sample consensus)
[4], the shadow cuts [23], and robust variational method
[24]. However, outlier rejection techniques can hardly handle
the surface with broad and soft specularities, i.e., the non-
Lambertian outliers that are dense and hard to distinguish.

Sophisticated reflectance model-based methods model and
approximate non-Lambertian reflectance. Rather than rejecting
the specularities and shadow regions as outliers, sophisticated
models were developed to approximate all observed pixels.
These reflectance models employ sophisticated polynomial
functions to approximate the real-world materials, such as the
bivariate functions [25]–[28], Ward reflectance model [5], [29],
the specular spike reflectance model [7], [30], Blinn-Phong
reflectance model [31], Torrance-Sparrow reflectance model
[32], and the microfacet models [33]. However, these hand-
crafted analytic models are useful only for limited classes of
non-Lambertian surfaces because the reflectance models vary
dramatically from material to material.

Exemplar-based methods benefit from the additional calibra-
tion objects in the same images. The calibration object with
the known surface normal transforms the non-Lambertian pho-
tometric stereo into a pixel matching problem. For example,
Hertzmann and Seitz [34] used a reference sphere to matching
the 3D object. However, the material of the reference object
has to be the same as the target, which limits the applications
of this class of exemplar-based methods.

2) Learning-Based Method: Inspired by the powerful learn-
ing ability of deep neural networks, deep learning methods
have been introduced to solving the non-Lambertian photomet-
ric stereo problem [10], [35]. DPSN [10] was the first proposed
method applying deep neural networks to the non-Lambertian
photometric stereo. This approach employs a seven-layers
fully-connected network to regress the surface normal of the
3D object and adopts the dropout technology [36] to simulate
the cast shadow on the images. However, DPSN estimates a
normal vector based solely on the single pixel, and the number-
fixed and order-fixed manner limit its practical use.

For better estimating the non-Lambertian objects and taking
full advantage of the information embedded in the neigh-
borhood, subsequent methods were improved by applying
the convolutional neural networks (CNN) [11]–[13], [37],
[38]. The works [13] and [39] proposed a fully-convolutional
network (FCN) to regress the surface normal, and a channel
max-pooling operation was adopted to ensure the arbitrary
number of input images. Chen et al. [11] also proposed an
SDPS-Net to estimate both the surface normal and illumination
direction, for uncalibrated photometric stereo. Ikehata [12]
proposed another approach, called CNN-PS, which employs
the observation map to overcome the fixed inputs problem and
to range observation intensities according to light directions.
The observation map was also adopted in [37], [38] for
inputs with order-agnostic illuminations. Furthermore, Taniai
and Maehara [40] proposed an unsupervised learning frame-
work to estimate both the surface normal and reflectance
map by minimizing the reconstruction loss. Their method
introduced the single constraint and used the physical model
to approximately render the re-rendered images, at the cost
of expensive computation. Similarly, the works [41]–[43]
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Fig. 2. An example of input images with different illumination directions.
In the red box, we show a situation where a pixel on non-Lambertian surface
with a normal vector n̄ is illuminated by a parallel light source l , photoed
by a camera in a view direction v. The non-Lambertian surface causes both
the specularities and diffuse reflections. Furthermore, attached shadow occurs
at surface where n̄�l < 0, while cast shadow occurs at the illumination is
occluded by objects.

also utilized reconstruction loss (so-called appearance loss) to
inverse the rendering process. Inverse rendering is the problem
of estimating illuminations, reflectance properties, and shape
from observed appearance. However, these methods all follow
the assumption of Lambertian surface, which is generally not
the case for real-world reflectance objects. By contrast, our
method approximates an accurate imaging process, which can
benefit the forward surface normals estimation task.

Unlike all the above methods which only apply the single
constraint, our DR-PSN combines both the surface normal
and reconstructed image constraints by a closed-loop dual
regression architecture. Rather than blindly increasing the
complexity of network, we use the normal loss associated with
reconstruction loss to address the non-Lambertian photometric
stereo, significantly outperforming these previous learning-
based methods. Simultaneously, DR-PSN meets the needs
of texture visualization, and generates reconstructed images
under the arbitrary specified illumination directions.

B. Dual Learning for Enhancement

Dual learning networks [44], [45] contain a primal stage
model and a dual stage model to learn two opposite mappings.
In the dual learning scheme, the primal task maps the space
X onto the space Y , while the dual task takes the samples
from the space Y and maps them back to the space X .
The two opposite mappings enhance the performance of the
both tasks, simultaneously. The two tasks are jointly learned
and their structural relationship is exploited to improve the
learning effectiveness. Therefore, the dual learning scheme
outperforms the traditional single regression scheme. Recently,
this framework has also been applied to performing image
translation without paired training data, such as Dual-GAN
[46] and Cycle-GAN [47].

However, our proposed DR-PSN is different from the above
unpaired dual learning methods. In our DR-PSN, we introduce
the encoded illumination information in the dual regression
stage, controlling the reconstructed images with arbitrary
specified illumination directions in testing, and thus our recon-
structed images can be different from the input images. Hence,
our DR-PSN can generate the specified images needed even
without the ground-truth of the input images.

III. NOTATIONS AND PRELIMINARIES

The following standard notations are adopted throughout.
Boldface capital letters stand for matrices and tensors, e.g., N̄
for the estimated surface normal of an object, while boldface
small letters denote vectors, e.g., light direction l . We use the
subscript i ∈ {1, 2, · · · , n} to represent the specified observa-
tion index, e.g., the i -th illumination direction l i and the i -th
observation image I i . Similarly, we choose the subscript p to
denote the index of a pixel in tensors or matrices, e.g., n̄p

is an estimated normal vector at the p-th pixel. Furthermore,
we use the C × H × W to represent the dimensionality of
image, normal and feature map, in which C is some channel
number and H × W represents the spatial resolution, e.g.,
I i ∈ R

3×H×W , where the first number 3 represents the RGB
channels.

Next following the common notations of [11], [40],
we recap the fundamental formulation in non-Lambertian pho-
tometric stereo. As shown in Fig. 2 [40], given n images under
different illumination directions l i ∈ R

3, i ∈ {1, 2, · · · , n},
a photometric stereo algorithm calculates the surface normal
n̄ ∈ R

3 [40]. Due to the non-Lambertian surface reflectance,
the real situation is illustrated in the red box of Fig. 2. Specifi-
cally, consider that a pixel on the non-Lambertian surface with
the unit normal n̄ is illuminated by the parallel light source
l with intensity e ∈ R

3. When this surface is photoed by a
linear-response camera in a view direction v ∈ R

3, the imaging
model can be approximated as follows:

I = s · ρ (e, n̄, l, v) · max
{

n̄�l, 0
}

+ �, (1)

where I denotes the measured intensity of the pixel, s is
a binary function for judging cast shadow (s = 0 for cast
shadow; otherwise s = 1), ρ (e, n̄, l, v) is a bidirectional
reflectance distribution function (BRDF), and max

{
n̄�l, 0

}

accounts for the attached shadows and shading, while � repre-
sents the noise and global illumination effect. In this situation,
the BRDF of a non-Lambertian surface exhibits anisotropic
characteristics, which makes the numerical resolution more
difficult.

Many works design learning frameworks based on Eq. (1)
to estimate the surface normal under the problem of non-
Lambertian photometric stereo [10]–[13], [37], [38]. However,
researchers have seldom explored using reconstructing images
(inverse processing) to improve the surface normal estimation
in a closed-loop framework.
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Fig. 3. The details of DR-PSN. The normal regression task estimates the surface normal, while the dual regression task synthesizes each of the reconstructed
images { Ī1, Ī2, · · · , Īn} from the estimated surface normal N̄ of the normal regression network. We concatenate the high-dimensional feature from the
normal regression task to the dual regression task with a shortcut. To better regress images under specified illumination directions, we also fuse the encoded
illumination directions L�

i , L��
i with the regressor twice for a corresponding reconstructed image.

IV. DUAL REGRESSION NETWORK

We propose a dual regression network to estimate both
surface normal and arbitrary reconstructed images. The archi-
tecture of our proposed DR-PSN is depicted in Fig. 3.

A. Normal Regression Task

The normal regression task estimates the surface normal
of a 3D object. For a 3D object photoed under n distinct
illumination directions, we first expand each illumination
direction from l i ∈ R

3 to a 3-channel illumination tensor
Li ∈ R

3×H×W , having the same spatial resolution as the
observation image I i . Then, we concatenate all the expanded
illumination directions and observation images to a tensor
M ∈ R

nC×H×W , where C = 6 is composed of the three
RGB channels and the three illumination direction channels.

In the normal regression task, we seek to find a mapping
FN : M → N̄ , such that the estimation FN (M) is similar to
the corresponding real surface normal N . More specifically,
the normal regression task contains three parts: the extractor
FNe , the max-pooling fusion, and the regressor FNr . First,
the extractor can be expressed as follows:

� = FNe(M; θ Ne), (2)

where FNe(·; θ Ne) is the mapping function of the 6 residual
blocks with two down-sampling convolutional layers [48]
and the learnable parameters θ Ne . We actually compared
the architectures of VGG [49]. Among the architectures
tested, the residual network [48] is slightly better and, there-
fore, it was chosen. Inspired by PS-FCN [13], we apply a
channel max-pooling operation to handle arbitrary number
of inputs. By max-pooling, we obtain a fixed feature map
�� ∈ R

C1×H �×W �
from the multi-fusion feature map � ∈

R
nC1×H �×W �

, where C1 is 256, H � = 1
4 H , and W � = 1

4 W .
Then the regressor FNr outputs the surface normal N̄ , giving

�� as:

N̄ = FNr (�
�; θ Nr ), (3)

where FNr (·; θ Nr ) is the regressor with three 3 × 3 convo-
lutional layers and two 3 × 3 deconvolutional layers, ending
with an L2 normalization that makes each pixel’s normal N̄ p

a unit vector, while θ Nr are the parameters of the regressor.

B. Dual Regression Task

After the normal regression task, we explore a dual regres-
sion task for learning the reconstructed images. The dual
regression task aims to learn a function FD : N̄ → Ī i ,∀i ∈
{1, 2, · · · , n}, where Ī i are expected to approximate the real
observation images I i . The architecture of this dual regression
task consists of an extractor and a regressor, as can be seen
in Fig. 3.

Given the estimated surface normal N̄ , the extractor F De

learns the feature map � ∈ R
C1×H �×W �

as follow:

� = FDe(N̄; θ De), (4)

where FDe(·; θ De) is a network having five 3×3 convolutional
layers (four stride = 2, and one stride = 1) and two 3 × 3
deconvolutional layers, as shown in Fig. 3, with the learnable
parameters θ De. We believe that the fused feature map ��
in the normal regression task represents the reflectance infor-
mation. In order to recover more details in the reconstructed
images, therefore, we concatenate �� to � to yield the
mixed feature � � ∈ R

512×H �×W �
before the regressor FDr .

Furthermore, we encode the illumination direction from vector
l i to L�

i ∈ R
3×H �×W �

and L��
i ∈ R

3×H ��×W ��
, respectively,

where H �� = 1
2 H and W �� = 1

2 W . The encoding is similar
to encoding l i to Li , which expands the vector to include
the corresponding spatial resolution. We concatenate these
two encoded illuminations to the two convolutional layers in
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the regressor which has the structure of two 3 × 3 convolu-
tional layers and four 3 × 3 deconvolutional layers. In this
way, we can control each reconstructed image Ī i . With the
combined reflectance feature ��, illumination direction l i , and
surface normal feature �, the dual regression network simulate
the imaging model Eq. (1) with powerful deep learning ability.
This dual regression task can be expressed as follows:

Ī i = FDr(�
�, L�

i , L ��
i ; θ Dr ), (5)

where θ Dr are the learnable parameters.

C. Dual Regression Loss Function and Training Procedure

We optimize the networks’ parameters, θ Ne , θ Nr , θ De and
θ Dr , by minimizing the joint loss function of the above two
regression tasks. The joint training loss can be written as:

L = Lnormal(N̄, N) + λtLrecons( Ī i , I i ,∀i), (6)

where λt is the weighting for the reconstruction loss.
The first part of the joint loss, Lnormal, denotes the normal

loss between the estimated surface normal N̄ and the ground-
truth N in the normal regression task, which is given by

Lnormal(N̄, N) = 1

H W

H W∑
p

(
1 − N̄ p � N p

)
, (7)

where � represents the dot-product operation. If the estimated
surface normal N̄ p at pixel p has a similar orientation as
the ground-truth N p , N̄ p � N p will be close to 1 and the
associated loss will approach 0.

The second part of the joint loss, Lrecons( Ī i , I i ,∀i),
denotes the reconstruction loss between the reconstructed
images { Ī1, Ī2, · · · , Īn} and the real observation images
{I1, I2, . . . , In} in the dual regression task, and we define
Lrecons( Ī i , I i ,∀i) as

Lrecons( Ī i , I i ,∀i) = 1

n

n∑
i=1

� Ī i − I i�2
2. (8)

We adopt a varying λt , rather than a fixed value λ, to con-
trol the weight of the reconstruction loss. Specifically, λt

changes during training epochs. We set λt = 0 for the first
training epoch, and increase λt by 0.02 after each training
epoch. This varying λt design is based on the fact that the
dual regression task learns the imaging model Eq. (1) with the
predicted normals, materials (from the shallower shortcut), and
illumination directions. Therefore, the learning processing of
the dual regression needs accurate surface normal, and we can
realize an accurate estimate by gradually increasing the weight
of reconstruction loss, while maintaining a stable training.
We also limit the maximum value of λt (protection threshold)
to 0.8. This prevents the weight of the reconstruction loss
to become too big which would make the normal regression
task ineffective. Experiments have shown that this varying
λt strategy is capable of providing powerful supervision
for both the surface normal estimation and reconstruction
images. Detailed experimental investigation and analysis for
the impact of λt on the achievable performance are given in
Subsection V-B.

The architecture and parameters of our DR-PSN are detailed
in Appendix. Our network is implemented in PyTorch [50]
and Adam optimizer [51] is used with the default settings of
β1 = 0.9 and β2 = 0.999. The learning rate is initially set to
0.001 and is divided by 2 every 5 epochs. We train the model
using a batch size of 32 for 50 epochs and choosing the fixed
n = 32 as the default number of input images. We set the
spatial resolution to H = W = 32 for the patch size. It takes
about 19 hours for training, using a single RTX 2080 GPU.

V. EXPERIMENTAL RESULTS

To verify the quantitative performance of our model, we use
some common metrics to measure the accuracy. For the
estimated surface normal, we adopt the widely used mean
angular error (MAE) in degree, calculated as

MAE = 1

T

T∑
p=1

arccos
(
N̄ p � N p

) [degree], (9)

where T is the total number of pixels in an evaluated image.
We also measure the percentage (%) that the pixels with
angular error less than 15◦, which is denoted by < err15◦ .
For the reconstructed images, we adopt the commonly used
average relative error (REL), which is defined by

REL = 1

nT

n∑
i=1

T∑
p=1

∣∣ Ī i,p − I i,p
∣∣

I i,p
, (10)

and the structural similarity index (SSIM) [52]. We evaluate
the SSIM with the minimum spatial size mask. We divide
the reconstructed images into two categories: belong to the
illumination directions of the input images (BI) and not belong
to the illumination directions of the input images (NBI).
Clearly, for the MAE and REL metrics, the smaller the better,
which is indicated by ↓ after the metrics, while ↑ after the
< err15◦ and SSIM metrics indicates that the larger the better.

A. Datasets

For training the network, we adopt two 3D datasets that
provide the surface normal, namely, the blobby shape dataset
[53] and the sculpture shape dataset [54]. Then, we employ the
MERL dataset [55] to render the 3D model from the blobby
and sculpture datasets, where the MERL dataset contains
100 different BRDFs of real-world materials. Following the
rendering settings in [11], we eventually obtain 85212 samples
of the training data. For each sample, 64 observation images
are rendered by random illumination directions in a half-
sphere. We split these samples into a ratio of 99 : 1, for training
(84360) and validation (852). With the 99:1 ratio of training
to validation, we have large number of training data (84360),
which is necessary for training a deep-network based model.
The validation set of 852 samples are also sufficiently large to
include all surface materials (100 kinds of reflectance in the
MERL dataset are all included) as well as to comprehensively
represent different types of objects in the training set (simple
and complex objects are all available). The rendering process-
ing of training data is shown in Fig. 4. We use the known
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TABLE I

PERFORMANCE COMPARISON OF THE SINGLE NORMAL REGRESSION NETWORK (SINGLE) AND THE PROPOSED DUAL REGRESSION NETWORK (DUAL)
AS WELL AS THE IMPACT OF DIFFERENT WEIGHTING STRATEGIES FOR DUAL REGRESSION TASK, IN TERMS OF FOUR METRICS AVERAGED OVER

THE VALIDATION DATASET. � STANDS FOR THE RATE-INCREASING, AND PT REPRESENTS THE PROTECTION THRESHOLD. FOR < err15◦
AND SSIM, THE HIGHER, THE BETTER. FOR MAE (◦) AND REL, THE LOWER, THE BETTER

Fig. 4. The rendering processing of training data. We use the MERL BRDFs
dataset [55] to render the blobby shape dataset [53] and the sculpture shape
dataset [54]. For each training sample, we render 64 observation images,
i.e., n = 64, in our settings. The intensity of observation images is adjusted
for easy viewing.

image intensity to normalize the input image and reconstruct
the original image intensity after regression.

Note that the rendered training set CyclesPS employed
in [12], which uses the Disney’s principled BSDFs [56] to
render the training set, is inappropriate for training many deep-
learning-based methods, including our DR-PSN, SDPS-Net
[11], PS-FCN [13], IRPS [40], etc. The reason is due to the
scale of CyclesPS, which only contains 45 samples (images).
This dataset is suitable for training the methods, CNN-PS [12]
and SPLINE-Net [38], which have the characteristic of ‘using
per-pixel observation as an observation map’. For these per-
pixel methods, every pixel of the image can be seen as a
training sample. Therefore, 45 samples are sufficient. However,
CyclesPS dataset is far too small for training the most deep-
learning-based methods, which use patches or whole images
as inputs.

To evaluate the performance of our network, we employ two
real photometric stereo datasets for testing, namely, the DiLi-
GenT benchmark dataset [19] and the Light Stage Data Gallery

[57]. The DiLiGenT dataset is the most widely used real-world
dataset for evaluating photometric stereo. It contains ten real-
world scenes of photometric stereo, which is challenging for its
strong non-Lambertian surfaces and complex structures. Each
object has 96 observation images illuminated under different
directions. The Light Stage Data Gallery contains six objects
without ground-truth. Therefore, We quantitatively evaluate
our method on the DiLiGenT dataset while qualitatively eval-
uate on the Light Stage Data Gallery. We change l i in the
dual regression task to produce arbitrary reconstructed images
under specified illumination directions in the test.

B. Effectiveness of Dual Regression Network

We first evaluate the effectiveness of our dual regression
network by comparing it with the single normal regression
network without the dual regression task. We keep the settings
and architecture of the single normal regression network the
same with the normal regression task of our dual regression
network. Moreover, we explore the influence of the weight of
the reconstruction loss in the dual regression task. We validate
the effectiveness of our strategy of linearly changing λt with
training epochs by comparing it with different fixed weight
values λ (0.1, 0.5, and 1). Note that the single normal
regression network can be regarded as a special case of
our dual regression network with the fixed weight λ = 0.
We also evaluate the impact of different rate-increasing (�)
settings and different protection threshold (PT) values on the
achievable performance of our linear λt strategy. Furthermore,
we compare this linearly varying λt with the quadratically
changing λt . For all these experiments, the performance are
evaluated on the validation set with 64 input images for each
sample, where all the reconstructed images belong to the BI
class. The results are summarized in Table I.

1) Comparison With Fixed λ: Experiments with IDs 0 and
1 demonstrate that the dual regression network with the
proposed linearly increasing weight λt achieves better perfor-
mance in surface normal estimation than the single regression
network (λ = 0). Specifically, for the dual regression network,
the MAE is 11.47◦ and the < err15◦ metric is 84.99%, while
for the single regression network, the MAE is 12.53◦ and the
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< err15◦ metric is 81.55%. This confirms that the dual
regression task (learning reconstructed images) enhances
surface normal learning. The reason is that the dual
regression introduces an additional constraint on recon-
structed images to provide additional supervision, effectively
reducing the potential space of surface normal learning.
In other words, it reduces the learning difficulty of surface
normal.

Compared with the dual regression networks with fixed
weight values λ (experiments with IDs 2, 3, and 4), the dual
regression network adopting the proposed strategy of lin-
early changing λt (experiment with ID 0) achieves the best
accuracy of surface normal estimation and the second best
accuracy of reconstructed images, which is very close to
the case of adopting the fixed λ = 1. Although the dual
regression network with λ = 1 achieves the best accuracy of
reconstructed images, it hardly improves the performance of
surface normal estimation compared with the single regression
network (experiment with ID 1). This suggests that fixing the
weight of the dual regression task to λ = 1 may be too big for
producing sufficient beneficial effect on the normal regression
task. Note that all the dual regression networks with the fixed
nonzero weights λ outperform the single normal regression
network with λ = 0, in terms of the accuracy of surface normal
estimation. This is because the dual regression task provides an
additional constraint on surface normal estimation. The effec-
tiveness of the proposed strategy of changing λt with training
epochs can be explained as follows. As explained previously,
the dual regression task learns the imaging processing with
the predicted normals, materials, and illumination directions,
and therefore the learning process of the dual regression
needs accurate surface normal. We set λt = 0 in the first
epoch to ensure that the primal normal regression task is well
learned first. Then, we gradually increase λt after each epoch,
gradually introducing the additional supervision for optimizing
the surface normal estimation.

2) Impact of Rate-Increasing/Protection Threshold: Given
� = 0.02, experiments with IDs 0, 5, and 6 evaluate the
impact of protection threshold. It can be seen that choosing
PT = 0.8 outperforms the other two settings, in terms of the
metrics measuring the both tasks. Specifically, with PT = 0.6,
the performance of surface normal estimation is almost equal
to that of PT = 0.8 (slightly worse in MAE and slightly
better in < err15◦). However, the performance of reconstructed
images is degraded in this case. This shows that a too small PT
may not provide sufficient supervision to the dual regression
task. By contrast, with PT = 1, the accuracy of the predicted
surface normal becomes considerably worse than the case of
PT = 0.8, although the results of reconstructed images are
slightly better. We also find that the loss of the dual regression
network cannot decrease any further after 40 epochs when
PT = 1. The results thus indicate that PT = 1 can hardly
produce sufficient beneficial effect on the normal regression
task. The empirical results therefore suggest that limiting the
maximum value of λt to 0.8 protects the priority of the
normal regression task, which in turn provides the best overall
performance.

Experiments with IDs 0, 7, and 8 compare the different rate-
increasing values on the achievable performance, given PT =
0.8. Note that the weight λt in experiment with ID 7 cannot
reach PT (Due to � = 0.01, the maximum weight reached is
0.5), and this is marked with * in Table I. It can be seen that
our choice of � = 0.02 achieves better performance than the
other two settings. The worse performance of experiment with
ID 7 is due to insufficient supervision, while with � = 0.04,
the rate increasing may be too large for a stable learning (the
weight reaches the maximum value 0.8 after only 20 epochs),
resulting a worse performance.

3) Comparison With Nonlinearly Varying λt : Experiments
with IDs 0, 9, and 10 compare the proposed linearly increas-
ing weight λt with the nonlinearly (quadratically) increasing
weight λt . It can be seen that the proposed linearly varying
weight strategy clearly outperforms the quadratically varying
weight. The reason for worse performance of the quadratically
increasing weight λt is due to too slow or too fast increasing
rate of the nonlinear weight at the beginning or ending
epochs.

Therefore, we choose the linearly increasing weight strategy
with � = 0.02 and PT = 0.8 as the default settings.

C. Evaluation on the DiLiGenT Benchmark Dataset

The test results of various methods on the DiLiGenT
benchmark dataset with 96 input images are listed in Table II,
where we compare our DR-PSN with both traditional and
learning-based methods in terms of achievable MAE (◦). For
traditional methods, we evaluate the low rank method [22]
of outlier rejection-based techniques, and bivariate functions
methods [26], [28] of sophisticated reflectance model-based
techniques. For learning-based methods, we choose SDPS-Net
[11], DPSN [10], IRPS [40], PS-FCN [13], and CNN-PS [12].

In practical applications, where sparse input images are
common, it is difficult to obtain 96 densely input images.
Therefore, we also compare our DR-PSN with both traditional
methods and deep learning-based methods with only 10 input
images in Table III to test the robustness of the DR-PSN under
fewer input images. For traditional methods, we keep the three
same methods [22], [26], [28] as in the case of 96 inputs.
For deep learning-based methods, we keep the methods [12],
[13] which can flexibly change the input images. Furthermore,
we also add the two new methods, SPLINE-Net [38] and
LMPS [37], which are designed for sparse inputs condition.

For the traditional methods, Matrix rank=3 [22], Bivariate
BRDF [26] and Bi-polynomial [28], we report the results from
the original references. The deep learning-based methods,
DPSN [10], SDPS-Net [11], PS-FCN [13] and LMPS [37],
were all trained with the same MERL dataset described in
Subsection V-A in their respective original papers. Therefore,
we run these models on DiLiGenT benchmark test dataset,
following the authors’ original settings and implementations
without any change. IRPS [40] is an unsupervised method and
was trained using the un-rendered real image dataset without
ground-truth normal. Therefore, for IRPS [40], we use the
results reported in the original paper. For SPLINE-Net [38],
we run the original model, which was trained by CyclePS
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TABLE II

TEST PERFORMANCE COMPARISON OF VARIOUS METHODS ON DILIGENT BENCHMARK DATASET. ALL METHODS ARE EVALUATED WITH 96 IMAGES
AND PERFORMANCE IS MEASURED BY MAE (◦). SDPS-NET TAKES 96 IMAGES WITHOUT ILLUMINATION DIRECTIONS (UNCALIBRATED

PHOTOMETRIC STEREO). CNN-PS* IS TRAINED WITH OUR MERL DATASET, WHILE CNN-PS IS THE ORIGINAL CNN-PS [12] TRAINED

WITH DISNEY DATASET

TABLE III

TEST PERFORMANCE COMPARISON OF VARIOUS METHODS ON DILIGENT BENCHMARK DATASET. ALL METHODS ARE EVALUATED WITH 10 IMAGES

AND PERFORMANCE IS MEASURED BY MAE (◦). CNN-PS* IS TRAINED WITH OUR MERL DATASET, WHILE CNN-PS IS THE ORIGINAL CNN-
PS [12] TRAINED WITH DISNEY DATASET

TABLE IV

TEST METRICS OF OUR DR-PSN METHOD ON DILIGENT BENCHMARK DATASET WITH 96 AND 10 INPUT IMAGES, RESPECTIVELY. FOR THE

CASE OF 96 INPUT IMAGES, ALL IMAGES ARE USED FOR EVALUATING THE SURFACE NORMAL, WHERE ALL RECONSTRUCTED IMAGES BELONG

TO THE BI CLASS

dataset with Disney’s principled BSDFs [56], on the test
dataset.1

Note that CNN-PS [12] was trained by CyclePS dataset
with Disney’s principled BSDFs [56]. The other deep learning-
based methods are all trained with our MERL dataset, except
for SPLINE-Net [38]. For a fair comparison, in addition to
keep the original CNN-PS [12] trained by Disney dataset,
we also train the CNN-PS with our dataset (the blobby
shape dataset [53] and sculpture dataset [54] with MERL
reflectance dataset [55]), marked it as CNN-PS*. We only set
one epoch to train CNN-PS* because the number of training

1We also attempted to train the SPLINE-Net model with our MERL dataset
using the authors’ code for a fair comparison with other methods. However,
the code appears to exist some errors and we could not run it.

samples (84360) in our dataset is much larger than the original
dataset (45 samples, default epochs 10). Due to the large
number of samples in our dataset, it takes approximately
220 hours for training one epoch on an NVIDIA TITAN
XP GPU.

Next Table IV lists all the test metrics of our model on the
DiLiGenT benchmark dataset with 96 and 10 input images,
respectively.

We also compare the visual results of our method with those
of several state-of-the-art learning-based methods in Figs. 5
and 6 for the 96 and 10 input images, respectively. Then,
we depict the visual results of our method using 96, 48,
and 10 input images, respectively, in Fig. 7. Furthermore,
Fig. 8 investigates the performance differences between BI
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Fig. 5. Qualitative results for real-world scenes from DiLiGenT benchmark dataset with 96 input images. The black numbers under the error maps represent
MAE (◦). The reconstruction errors are shown with intensity ×10 for better details. The contrast of the observation images and reconstructed images are also
adjusted for easy viewing in the same parameter (50% enhancement). The red boxes in the error maps are the regions with complex structures, while the
orange boxes in the error maps are the regions with strong shadow and inter-reflections. Our method produces more robust estimations in these regions.

reconstructed images and NBI reconstructed images obtained
by our DR-PSN and tested with 48 images.

1) Discussion on Estimated Surface Normal (With 96 Input
Images): Tables II compares the surface normal estimation

results of our DR-PSN and several existing state-of-the-art
photometric stereo methods on the DiLiGenT benchmark, with
96 inputs. It can be seen that our DR-PSN ranks the top with
an average MAE of 7.90◦ (test with 96 images). The CNN-PS
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Fig. 6. Qualitative results for real-world scenes from the DiLiGenT
benchmark dataset with 10 sparse input images. The black numbers under
the error maps represent MAE (◦). The contrast of the observation images
are adjusted for easy viewing in the same parameter (50% enhancement).
The orange boxes in the error maps are the regions with cast shadows. Our
method produces more robust estimations in these regions.

[12], trained by Disney dataset, ranks the second best on aver-
age and its performance is very close to our DR-PSN, which
is trained by the MERL dataset. Also, the performance of
CNN-PS is better than that of CNN-PS* because the advanced
training set rendered with Disney’s principled BSDFs [56].
We note that the author of CNN-PS [12] discarded the first
20 images of “Bear” in the paper to record a much better
MAE of 4.25◦ for “Bear”. The reason for discarding some test
images given by the author [12] is that the intensity values
around the stomach region of the “Bear” are wrong in the
first 20 images. For fair comparison, we however input all
the 96 images of “Bear” when evaluating all the methods on
“Bear”. It can be seen that the MAE of CNN-PS [12] on
“Bear” dramatically degrades to 12.30◦ when inputting all the
96 images. It suggests that CNN-PS uses a per-pixel manner
for the observation map, which may be not robust to errors in
input images. In fact, we note that the results of the other
methods for “Bear” reported in Table II with all 96 input
images are only slightly worse than the corresponding results
by discarding the first 20 images. For space-saving purpose,
we omit the results of discarding first 20 images.

We show the visual comparison of several state-of-the-art
methods on “Buddha”, “Bear”, “Pot2” and “Harvest” under
96 input images in Fig. 5, where we mark some boxes. The
red boxes represent the complex-structured regions, such as
the mouth of “Buddha” and the flower of “Pot2”. It can be
seen that the error maps of our method show a lower angular
error in these regions. Compared with other state-of-the-art
methods, our DR-PSN also produces more details in the areas
with complex structures. This indicates that our DR-PSN is
more robust and accurate in these challenging surfaces. The
reason is that our DR-PSN forms a closed-loop architecture to
provide additional supervision on surface normal estimation.
The extra dual regression network learns the inverse process
to reduce the difficulty in the normal regression task.

2) Discussion on Robustness With Fewer Input Images:
Many practical applications involves sparse photometric
stereo. We therefore evaluate our DR-PSN with 10 sparse
inputs. We emphasize that the DR-PSN applies the channel
max-pooling [13] in the normal regression task. The max-
pooling operation can extract the arbitrary number of features
from images captured under different illumination directions
and, moreover, it naturally aggregates the strongest response
of features while ignoring non-activated shadows. Therefore,
our DR-PSN can be flexibly used for an arbitrary number of
input images.

In Table III, we compare the surface normal results of our
DR-PSN and other state-of-the-art methods on the DiLiGenT
benchmark with 10 input images, where it can be clearly
seen that our method achieves the best performance with
LMPS [37] as the close second best. Furthermore, we show
the visualized results in Fig. 6. The orange boxes reveal the
regions with cast shadows, such as the cuff of “Buddha”,
the back of “Reading”, and the base of “Goblet”. In these
areas with cast shadows, the proposed DR-PSN outperforms
other methods, as shown in the corresponding error maps.

Table IV lists all the metrics obtained by our DR-PSN
for the DiLiGenT benchmark dataset with 96 and 10 input
images, respectively. Observe that the average SSIM and REL
attained are 0.948 and 0.167 when testing with 96 images,
while the average SSIM and REL attained are 0.944 and
0.166 when testing with 10 images. It can be seen that the
accuracy of reconstructed images by the DR-PSN is fairly
robust with fewer input images. Furthermore, Fig. 7 shows the
visual comparison for three examples, “Cat”, “Reading” and
“Cow”, obtained by our method when testing with 96 images,
48 images and 10 images, respectively. Observe that the
reconstructed images hardly show any visual differences when
testing with different numbers of input images. The yellow
boxes in Fig. 7 again represent regions with varying surface
colors and detailed structures. Our method produces robust
reconstructions of these areas.

3) Discussion on Performance of Arbitrary Reconstructed
Images: In Table IV, BI represents the reconstructed images
belonging to the illumination directions of input images, while
NBI represents the reconstructed images not belonging to the
illumination directions of input images. Hence the experiment
with 10 input images shows that the accuracy of reconstructed
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Fig. 7. Qualitative test results of our DR-PSN for real-world scenes from the DiLiGenT benchmark dataset with 96, 48, and 10 input images, respectively.
The black numbers under the error maps represent MAE (◦). The reconstruction errors are shown with intensity ×10 for better details. The contrast of the
observation images and reconstructed images are also adjusted for easy viewing in the same parameter (50% enhancement). The yellow boxes are the regions
with varying surface colors and detailed structures. Our DR-PSN achieves accurate reconstructions.

images are almost the same, whether they belong to the
illumination directions of input images or not.

Fig. 8 gives a visual example on object “Goblet”, which
are tested with 48 input images. Specifically, in the test,
we choose the odd IDs (BI group) of 96 images as the inputs.
Thus, the even IDs (NBI group), 2, 4, · · · , 96, are not in
inputs. We show some visual results of the BI group and
the NBI group, respectively, both groups having the same
number of images depicted. The positions of specularities
and shadow are accurately estimated in both the BI group
and the NBI group. This illustrates that the encoded illumi-
nation information is well-utilized and in the dual regres-
sion task. Therefore, our DR-PSN can accurately generate
specified reconstructed images under arbitrary illumination
directions.

4) Discussion on Limitations of Proposed Method: From
Table II, although our method attains the best performance
on average, it only obtains the second best performance on
five objects (“Cat”, “Cow”, “Goblet”, “Harvest” and “Pot2”),
evaluated with 96 input images. We infer that the max-
pooling [13] adopted by our method discards a large amount
of the features from the inputs and only remains the maxi-
mum response value. Therefore, the utilization of our method
reduces when the input images increase, which may impact on
its performance to some extent. Also our method only achieves
the fifth and third best performance on “Ball” and “Reading”,
respectively, among the 10 methods. First, for object “Ball”
with a particularly simple structure and almost Lambertian
surface, our method does not outperform the traditional and
single-supervision learning-based methods. In this extreme
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Fig. 8. Visual results of the object “Goblet” by our DR-PSN. We test it with 48 input images, where we choose the odd ID of images as inputs. Therefore,
the reconstructed images 1, 15, 45, 75 belong to the illumination directions of input images (BI group), while the reconstructed images 30, 60, 90, 96 do not
belong to the illumination directions of input images (NBI group). The black numbers under error maps represent MAE in degree. The reconstruction errors
are shown with intensity ×10 for better details. The contrast of the observation images and reconstructed images are also adjusted for easy viewing in the
same parameter (50% enhancement).

Fig. 9. Reconstruction results of the object “Ball” by our DR-PSN. We test it
with 96 input images. The red numbers under error maps represent REL. The
reconstruction error maps are shown with intensity ×10 for better details. The
contrast of the observation images and reconstructed images are also adjusted
for easy viewing in the same parameter (50% enhancement). The yellow boxes
stand for the regions with aggregated specularities, and errors, respectively.

case, the normal loss provides a strong penalty, while our
dual regression task (reconstruction loss) may weaken this
constraint. Second, for object “Reading”, which has strong
specularities, our DR-PSN also performs poorer than IRPS
and CNN-PS. In this case, we can see that the reconstructed
images have major errors in the specularities regions. The error
on the dual regression task may impact on the accuracy of the
normal regression task, as it is a closed-loop process.

We also notice that the errors of reconstructed images
mainly exist in specularities regions, such as the crinkles of
object “Harvest” and the middle of object “Reading” (see
Figs. 5 and 7, respectively). The reason may be the use of max-
pooling operation in the normal regression task. In fact, max-
pooling is used for handling arbitrary number of inputs and
aggregating features from multiple inputs, which extracts the
most salient information from all the features [13]. However,
the most salient information always includes specularities.
In our dual regression task, the shortcut after max-pooling
provides the reflectance feature for imaging the reconstructed
images. Unfortunately, it also brings specularities information

aggregated from all inputs, which may cause errors in the
reconstructed images. We show an obvious example of “Ball”,
which has evenly distributed specularities under the different
input images, in Fig. 9. It can be seen that almost all the
specularities existed in the inputs are aggregated in the recon-
structed images (yellow boxes) due to the max-pooling fusion
operation, causing errors.

D. Evaluation on the Light Stage Data Gallery

We also evaluate our DR-PSN on the Light Stage Data
Gallery [57]. The resolutions of images in the Light Stage Data
Gallery are much larger than those in the DiLiGenT bench-
mark dataset. Owing to the memory limit of GPU, we test
the Light Stage Data Gallery with 72 input images. Fig. 10
shows the results obtained. Due to the absence of ground-truth
of the surface normal in this dataset, we qualitatively show
the normal estimation. Note that the reconstructed images
still have the ground-truth, and hence we can quantitatively
evaluate reconstructed images.

1) Discussion on Estimated Surface Normal: As shown
in Fig. 10, the estimated surface normal can accurately report
the shapes of the objects. The red boxes show the fiber skirt
and hands of “Fighting”, the belt of “Standing” as well as
the branches and leaves of “Plant”. It can be seen that the
estimated normals reveal the details in these regions without
blur. The shape of fingers can be distinguished in “Fighting”,
and even the rugged texture of the clothes can be observed
in the estimated surface normal. These examples illustrate the
effectiveness of our DR-PSN. We also observe that some noise
exists on the surface normal in some place where it should be
smooth, such as the armor of “Standing”. This may be caused
by the noise in the observed images, because of the low quality
of photoed images.

2) Discussion on Reconstructed Images: Fig. 10 also
reports the results of reconstructed images. We observe that
the REL values of the reconstructed images are worse than
those obtained for the DiLiGenT benchmark dataset. It may
be due to the high-frequency noise in the observed images
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Fig. 10. Evaluation on the Light Stage Data Gallery with 72 input images using our DR-PSN. We qualitatively show the estimated surface normal and
quantitatively evaluate the reconstructed image. The red boxes report the details of the estimated surface normal. The reconstruction errors are shown with
intensity ×10 for better details. The contrast of observation images and reconstructed images are also adjusted for easy viewing in the same parameter (50%
enhancement for “Fighting” and “Standing”, 30% for “Plant”).

TABLE V

DETAILED ARCHITECTURE AND PARAMETERS OF DR-PSN: ‘S’ AFTER
“CONV” REPRESENTS THE STRIDE OF THE CONVOLUTIONAL LAYER,

‘L_RELU’ IS THE SHORT FORM FOR ‘LEAKY_RELU’, AND ‘MAX-
P’ DENOTES THE MAX-POOLING OPERATION. WE SEPARATE

THE REGRESSOR AND EXTRACTOR WITH A LINE IN EACH

TASK. ALSO, THE RED ARROW REVEALS THE FUSION

OF REFLECTANCE FEATURE AND NORMAL FEATURE

impacting on the performance. Clearly, the noisy input images
affect the accuracy of reconstructed images. Nevertheless, our
method accurately generates the positions of specularities and

shadow, e.g., in “Fighting” and “Standing”. We also note that
the performance of “Plant” is worse than others. Our analysis
indicates that this is because the reflectance of real plants
(leaves) are rarely observed in our training dataset.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a dual regression net-
work, called DR-PSN, to reconstruct both surface normal and
image. Our main contribution has been exploring reconstructed
images to further promote the accuracy of recovering the sur-
face normal. This has been achieved by introducing additional
constraints on observed images and reconstructed images to
form a closed-loop for providing additional supervision. More-
over, our method can generate accurate reconstructed images
under arbitrary illumination directions to intuitively show the
texture information and anisotropic reflectance properties of
the surface. Extensive quantitative comparisons on the most
widely used DiLiGenT benchmark dataset have shown that our
DR-PSN outperforms state-of-the-art calibrated photometric
stereo methods, including traditional algorithms and learning-
based methods. Specifically, the experimental results have
demonstrated that the estimated surface normal obtained by
our DR-PSN is significantly more accurate than those obtained
by traditional photometric stereo algorithms and state-of-the-
art learning-based approaches. In particular, our method has
been shown to better handle the complex-structured and strong
shadow regions, and to be capable of generating accurate
reconstructed images under arbitrarily specified illumination
directions. Additional qualitative experiment on the Light
Stage Data Gallery has further confirmed the effectiveness of
our proposed dual regression network.
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Our method can benefit the photometric stereo community
in the following two ways: 1. our work generates the specified
images in addition to surface normals, which provides the
example of combining multiple tasks in 3D recovery, and 2. the
extra task, reconstructing the images, is proved to be beneficial
to the estimation of surface normals, which inspires future
work to find more auxiliary supervisions to further improve
the accuracy of surface normal estimation, rather than blindly
increasing the complexity of network architecture. In fact, our
work unifies the 3D reconstruction and rendering tasks in one,
which has potential for a wider range of applications.

Despite of offering the state-of-the-art performance, our
method can be further improved. The training set, which is
rendered using the MERL dataset [55], hardly spans the whole
set of materials existing in nature. To further improve the
accuracy, employing a larger material dataset to cover the
tremendous real-world materials is necessary, such as Disney’s
principled BSDFs dataset [56].

There are several promising ways to extend our work.
First, we will explore the reconstruction of arbitrary material
properties as the objects. It can be seen that the regression
task approximately learns the imaging model, and in this way,
the material can be used to render another object while keeping
the same material properties of the original object. This can
be used to render meshes with realistic appearances. Second,
we will extend our DR-PSN to the uncalibrated photometric
stereo, which will benefit wider practical applications. We will
design an illumination direction prediction network, which
has already been investigated in some deep learning-based
uncalibrated photometric stereo methods [11], [58], to estimate
the lights from the input image, instead of inputting the
calibrated illumination directions.
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APPENDIX

DETAILED ARCHITECTURE AND PARAMETERS OF DR-PSN

Table V details the architecture and parameters of our DR-
PSN. The left part of Table provides the detailed architecture
and parameters of the normal regression task, and the right part
of Table provides the detailed architecture and parameters of
the dual regression task. It can be seen that the architecture of
regressors (below the lines in Table V) experience interleaved
down-sampling and up-sampling. Note that the down-sampling
and the up-sampling are implemented by deconvolution layer
and stride = 2 convolution layer, respectively. This structure
can increase the receptive field and preserve spatial informa-
tion with a smaller memory consumption [13].

REFERENCES

[1] R. J. Woodham, “Photometric method for determining surface orien-
tation from multiple images,” Opt. Eng., vol. 19, no. 1, pp. 139–144,
Feb. 1980.

[2] D. Miyazaki, K. Hara, and K. Ikeuchi, “Median photometric stereo as
applied to the segonko tumulus and museum objects,” Int. J. Comput.
Vis., vol. 86, nos. 2–3, pp. 229–242, Jan. 2010.

[3] T.-P. Wu and C.-K. Tang, “Photometric stereo via expectation max-
imization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3,
pp. 546–560, Mar. 2010.

[4] K. Sunkavalli, T. Zickler, and H. Pfister, “Visibility subspaces: Uncal-
ibrated photometric stereo with shadows,” in Proc. ECCV, Heraklion,
Greece, Sep. 2010, pp. 251–264.

[5] D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and
spatially-varying BRDFs from photometric stereo,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 6, pp. 1060–1071, Jun. 2010.

[6] L. Chen, Y. Zheng, B. Shi, A. Subpa-Asa, and I. Sato, “A microfacet-
based reflectance model for photometric stereo with highly specular
surfaces,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Venice, Italy,
Oct. 2017, pp. 3162–3170.

[7] S.-K. Yeung, T.-P. Wu, C.-K. Tang, T. F. Chan, and S. J. Osher, “Normal
estimation of a transparent object using a video,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 4, pp. 890–897, Apr. 2015.

[8] Y. Wang, J. Liang, D. Cao, and Z. Sun, “Local semantic-aware deep
hashing with Hamming-isometric quantization,” IEEE Trans. Image
Process., vol. 28, no. 6, pp. 2665–2679, Jun. 2019.

[9] K. Wei, M. Yang, H. Wang, C. Deng, and X. Liu, “Adversarial fine-
grained composition learning for unseen attribute-object recognition,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Seoul, South Korea,
Oct. 2019, pp. 3741–3749.

[10] H. Santo, M. Samejima, Y. Sugano, B. Shi, and Y. Matsushita, “Deep
photometric stereo network,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops (ICCVW), Venice, Italy, Oct. 2017, pp. 501–509.

[11] G. Chen, K. Han, B. Shi, Y. Matsushita, and K.-Y.-K. Wong, “Self-
calibrating deep photometric stereo networks,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA,
Jun. 2019, pp. 8739–8747.

[12] S. Ikehata, “CNN-PS: CNN-based photometric stereo for general non-
convex surfaces,” in Proc. ECCV, Munich, Germany, Sep. 2018,
pp. 3–19.

[13] G. Chen, K. Han, and K.-Y. K. Wong, “PS-FCN: A flexible learning
framework for photometric stereo,” in Proc. ECCV, Munich, Germany,
Sep. 2018, pp. 3–19.

[14] Y. Ju, K.-M. Lam, Y. Chen, L. Qi, and J. Dong, “Pay attention to devils:
A photometric stereo network for better details,” in Proc. 29th Int. Joint
Conf. Artif. Intell., Jul. 2020, pp. 694–700.

[15] F. Logothetis, I. Budvytis, R. Mecca, and R. Cipolla, “A CNN based
approach for the near-field photometric stereo problem,” in Proc. BMVC,
Sep. 2020, pp. 1–12.

[16] H. Santo, M. Waechter, and Y. Matsushita, “Deep near-light photometric
stereo for spatially varying reflectances,” in Proc. ECCV, Aug. 2020,
pp. 1–16.

[17] F. Solomon and K. Ikeuchi, “Extracting the shape and roughness of
specular lobe objects using four light photometric stereo,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 18, no. 4, pp. 449–454, Apr. 1996.

[18] S. Barsky and M. Petrou, “The 4-source photometric stereo technique for
three-dimensional surfaces in the presence of highlights and shadows,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10, pp. 1239–1252,
Oct. 2003.

[19] B. Shi, Z. Mo, Z. Wu, D. Duan, S.-K. Yeung, and P. Tan, “A benchmark
dataset and evaluation for non-lambertian and uncalibrated photomet-
ric stereo,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 2,
pp. 271–284, Feb. 2019.

[20] F. Verbiest and L. Van Gool, “Photometric stereo with coherent outlier
handling and confidence estimation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Anchorage, AK, USA, Jun. 2008, pp. 1–8.

[21] H. Fan, Y. Luo, L. Qi, N. Wang, J. Dong, and H. Yu, “Robust photo-
metric stereo in a scattering medium via low-rank matrix completion
and recovery,” in Proc. 9th Int. Conf. Hum. Syst. Interact. (HSI),
Queenstown, New Zealand, Jul. 2016, pp. 703–717.

[22] S. Ikehata, D. Wipf, Y. Matsushita, and K. Aizawa, “Robust photometric
stereo using sparse regression,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Providence, RI, USA, Jun. 2012, pp. 318–325.

[23] M. Chandraker, S. Agarwal, and D. Kriegman, “ShadowCuts: Photo-
metric stereo with shadows,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Minneapolis, MN, USA, Jun. 2007, pp. 1–8.

[24] Y. Queau, T. Wu, F. Lauze, J.-D. Durou, and D. Cremers, “A non-convex
variational approach to photometric stereo under inaccurate lighting,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI,
USA, Jul. 2017, pp. 99–108.

Authorized licensed use limited to: Ocean University of China. Downloaded on April 08,2021 at 03:59:07 UTC from IEEE Xplore.  Restrictions apply. 



3690 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

[25] N. Alldrin, T. Zickler, and D. Kriegman, “Photometric stereo with
non-parametric and spatially-varying reflectance,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Anchorage, AK, USA, Jun. 2008,
pp. 1–8.

[26] S. Ikehata and K. Aizawa, “Photometric stereo using constrained
bivariate regression for general isotropic surfaces,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,
pp. 2179–2186.

[27] T. Higo, Y. Matsushita, and K. Ikeuchi, “Consensus photometric stereo,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
San Francisco, CA, USA, Jun. 2010, pp. 1157–1164.

[28] B. Shi, P. Tan, Y. Matsushita, and K. Ikeuchi, “Bi-polynomial modeling
of low-frequency reflectances,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 6, pp. 1078–1091, Jun. 2014.

[29] H.-S. Chung and J. Jia, “Efficient photometric stereo on glossy surfaces
with wide specular lobes,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Anchorage, AK, USA, Jun. 2008, pp. 1–8.

[30] T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), New York, NY, USA, Jun. 2006, pp. 1825–1832.

[31] S. Tozza, R. Mecca, M. Duocastella, and A. Del Bue, “Direct differential
photometric stereo shape recovery of diffuse and specular surfaces,”
J. Math. Imag. Vis., vol. 56, no. 1, pp. 57–76, Sep. 2016.

[32] A. S. Georghiades, “Incorporating the Torrance and Sparrow model of
reflectance in uncalibrated photometric stereo,” in Proc. 9th IEEE Int.
Conf. Comput. Vis., Nice, France, Oct. 2003, pp. 1–8.

[33] L. Chen, Y. Zheng, B. Shi, A. Subpa-Asa, and I. Sato, “A microfacet-
based model for photometric stereo with general isotropic reflectance,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 48–61,
Jan. 2021.

[34] A. Hertzmann and S. M. Seitz, “Example-based photometric stereo:
Shape reconstruction with general, varying BRDFs,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 27, no. 8, pp. 1254–1264, Aug. 2005.

[35] F. Logothetis, I. Budvytis, R. Mecca, and R. Cipolla, “PX-NET: Simple,
efficient pixel-wise training of photometric stereo networks,” 2020,
arXiv:2008.04933. [Online]. Available: http://arxiv.org/abs/2008.04933

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[37] J. Li, A. Robles-Kelly, S. You, and Y. Matsushita, “Learning to minify
photometric stereo,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019, pp. 7568–7576.

[38] Q. Zheng, Y. Jia, B. Shi, X. Jiang, L. Duan, and A. Kot, “SPLINE-
Net: Sparse photometric stereo through lighting interpolation and normal
estimation networks,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Seoul, South Korea, Oct. 2019, pp. 8549–8558.

[39] G. Chen, K. Han, B. Shi, Y. Matsushita, and K.-Y.-K. Wong,
“Deep photometric stereo for non-Lambertian surfaces,” IEEE Trans.
Pattern Anal. Mach. Intell., early access, Jun. 29, 2020, doi:
10.1109/TPAMI.2020.3005397.

[40] T. Taniai and T. Maehara, “Neural inverse rendering for general
reflectance photometric stereo,” in Proc. ICML, Stockholm, Sweden,
Jul. 2018, pp. 4857–4866.

[41] Y. Yu and W. A. P. Smith, “InverseRenderNet: Learning single image
inverse rendering,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019, pp. 3155–3164.

[42] S. Sengupta, A. Kanazawa, C. D. Castillo, and D. W. Jacobs, “SfSNet:
Learning shape, reflectance and illuminance of faces ‘in the wild,”’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City,
UT, USA, Jun. 2018, pp. 6296–6305.

[43] S. Wu, C. Rupprecht, and A. Vedaldi, “Unsupervised learning of proba-
bly symmetric deformable 3D objects from images in the wild,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1–10.

[44] Y. Xia et al., “Dual supervised learning,” in Proc. ICML, Sydney, NSW,
Australia, Aug. 2017, pp. 3789–3798.

[45] Y. Xia et al., “Model-level dual learning,” in Proc. ICML, Stockholm,
Sweden, Jul. 2018, pp. 5383–5392.

[46] Z. Yi, H. Zhang, P. Tan, and M. Gong, “DualGAN: Unsupervised
dual learning for image-to-image translation,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Venice, Italy, Oct. 2017, pp. 2849–2857.

[47] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Venice, Italy, Oct. 2017, pp. 2223–2232.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[49] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, San Diego, CA, USA,
May 2015, pp. 1–14.

[50] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. NIPS, Vancouver, BC, Canada, Dec. 2019,
pp. 1–12.

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, San Diego, CA, USA, May 2015, pp. 1–15.

[52] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[53] M. K. Johnson and E. H. Adelson, “Shape estimation in natural illumina-
tion,” in Proc. CVPR, Providence, RI, USA, Jun. 2011, pp. 2553–2560.

[54] O. Wiles and A. Zisserman, “SilNet: Single- and multi-view recon-
struction by learning from silhouettes,” in Proc. Brit. Mach. Vis. Conf.
(BMVC), London, U.K., Sep. 2017, pp. 1–13.

[55] W. Matusik, H. Pfister, M. Brand, and L. Mcmillan, “A data-driven
reflectance model,” ACM Trans. Graph., vol. 22, no. 3, pp. 759–769,
Jul. 2003.

[56] B. Brent, “Physically-based shading at Disney,” in Proc. SIGGRAPH
Course, Practical Physically Based Shading Film Game Prod., 2012,
pp. 1–7.

[57] C.-F. Chabert et al., “Relighting human locomotion with flowed
reflectance fields,” in Proc. ACM SIGGRAPH Sketches SIGGRAPH,
Nicosia, Cyprus, Jun. 2006, pp. 183–194.

[58] G. Chen et al., “What is learned in deep uncalibrated photometric
stereo?” in Proc. ECCV, Aug. 2020, pp. 1–17.

Yakun Ju (Graduate Student Member, IEEE)
received the B.Sc. degree from Sichuan University,
Chengdu, China, in 2016. He is currently pursuing
the Ph.D. degree in computer application technology
with the Department of Computer Science and Tech-
nology, Ocean University of China, Qingdao, China,
supervised by Prof. J. Dong. His research interests
include 3D reconstruction, deep learning, and image
processing.

Junyu Dong (Member, IEEE) received the B.Sc.
and M.Sc. degrees from the Department of Applied
Mathematics, Ocean University of China, Qingdao,
China, in 1993 and 1999, respectively, and the Ph.D.
degree in image processing from the Department
of Computer Science, Heriot-Watt University, U.K.,
in 2003. In 2004, he joined the Ocean University
of China, where he is currently a Professor and the
Vice-Dean of the College of Information Science and
Engineering. His research interests include computer
vision, underwater image processing, and machine

learning, with more than ten research projects supported by the NSFC, MOST,
and other funding agencies.

Sheng Chen (Fellow, IEEE) received the B.Eng.
degree in control engineering from the East China
Petroleum Institute, Dongying, China, in 1982,
the Ph.D. degree in control engineering from the
City, University of London, U.K., in 1986, and the
D.Sc. degree from the University of Southampton,
Southampton, U.K., in 2005. From 1986 to 1999,
he held research and academic appointments at the
universities of Sheffield, Edinburgh, and Portsmouth,
U.K. Since 1999, he has been with the School of
Electronics and Computer Science, University of

Southampton, U.K., where he is currently a Professor in intelligent systems
and signal processing. He is also a Chief Scientist at the Center on Artificial
Intelligence, Ocean University of China. His research interests include neural
network and machine learning, adaptive signal processing, and wireless
communications, and nonlinear system modeling. He has published over
700 research articles. He has more than 15 400 Web of Science citations
with an H-index 54, and more than 31 200 Google Scholar citations with
an H-index 75. He is a Fellow of the U.K. Royal Academy of Engineering
and the IET, and an original ISI Highly Cited Researcher in engineering
(March 2004).

Authorized licensed use limited to: Ocean University of China. Downloaded on April 08,2021 at 03:59:07 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TPAMI.2020.3005397


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


