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Fig.1 Multi-source remote sensing image fusion classification network based on wavelet transform and parallel attention mechanism
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Fig.2 Wavelet transform feature extractor

Hya sk LidtAr 7RESR, WERDHTAE D
BT AN F BEUEW] T ASSC A K WPANet A5 7
A Rk B AT Rk

1 AXT7E

A CHEH ) WPANet 451 74 % fk 0 ) 4 ] 1
Fizs, H/NERFHESRE N 2% . 2 PR Rl A 9 2%
DL A R . WPANet 32 2540 45 P AN e
BEHL: BTN i () R AR B OB AT =
JIFHERA RS . T PR 20 B A 28 AR ST 3251 T
SRR IAN . BT /N AR e (R R S U B
ITVER JIRFIE R A B
1.1 PLEEE{RZeHs

A SRR TR UL UL P 285 B A DL 5E il 15 A5
M5 BAFE A AR A . Eoeh EmAmNG
B B EEG ™ e RTYC fE sALE T IA K
BTN e RTVWC, WG IX P FPAS [F RS 1 S AE N
WPANet %1 N5 &« K 5o o0 b 7 i
(Principal Component Analysis, PCA) %} 1™ #£
THE o AT PR AL EE DLOR B HOCBE R, AT
WOTHEE, RTFIIZRRER .

TE/NI SRR B 25, 1™ id 3T/
AR IV RFAE FRIOREER,  BE08 B 4 Hb S I U RFAE
TEARS S B A, DS AT (1) S0 i AT R AT
FRIERISEE . 752 PRAFERL A 25, (T
PATVE R TR IE Bl & 2%, 2 i RFAE 3 LI
IPSU L — 2 ) 1SR S i R R AR S PR R A
A, Bh, BERRHEM N EERE L, ¥
CL 78 2 Rl 10 o 24 AR ALE LS A AN (R ) L P R A
P, ffFH Softmax PREGHATIH—, 1535
R 7 5

1.2 EF R THRAVFER LSS

/N 3 R R B B AR W /N e A 3 5 N A% S 1)
Transformer RFESmbDas = , Fi| FH A2 18] 70 7 i
B, FE TR A AR B 20 RS S, AT B
B b SR R TR ARRAGE 1 AT 3R SR . W] 2 B,
Y ERINARAEE 1 e RPYC, @IS AT ST R RN
FFEW, e ROCKILEMHETHAT -

C

T=1w, er"" (1)

IR 38 T K04 /N A TR SR P 104 o 308 5 5 N I A e
(DWT) ¥4 1 43Iy 4 AN/INBF 5 Se BN Rpt .
ARCERE Haar NE R, 2x2 Haar A

FEFETT R IR :
1M1
HZ_\/z[l —1} @

Hor, H, BAT A T 40 0 5 S5 A 8k A
F =@/\2,1/V2) FIF, =@/~N2,-112) « 4TI
FR B PE D 2% F AN S IBIE R R oK 1 Ml 2
AN LR, JE B A A R
(UG 8 358 78 AT S PR IR A 1 A, RN 4
ANFETFA e N~ N~ Ty AL,

H
—x
2

X
INKe}

ILL"LH"HL"HH:DWT(I_)ER 3)

BEE, RN T T DA (R T 25 45 T SRR
EFIORER B, Mt R A (5 B E k.
3 i, T RBIRISAG R, i Haar /)
WEH, THAMRIT 4 555 1, R HH
EED, 1, OKTFARESER, 1, (EH
RS B R 1, G gy s s
). 1, TERURLEE 2050 2 WX 1 3 Ak S A
T 0y L 1, TSRS F 5 0 52 15 50
Y15

R AR P 4 AN T, B
BRSAE T «

o

ﬂ><ﬂ><C
2 2

1=Concat(1,, 1yl 1 ) €R

LL? "LH? "HL?* "HH (4)

BFR, %1485 key CK") Fl value (V*),
M query ( Q) JyEaAH NFFAER 1 o IS T/

Iy Ity
DWT

—
f—

IDWT

b~

Igr, Tom

3DWT #1 IDWT df2
Fig.3 DWT and IDWT process



4 JEE L AR K24

WA 2 Sk BER I EA query A& TR
KHER key A1 value _EHEAT:

head, = Attention (Q,, K", V")
KT 5
= Softmax [Q'%]Viw ®)

h

HpKYRRETNLEL T RGN key, V"
KARFEIAN KRG FRESEM value, D, FRIRFE
INEEASKIIYERE . T 2k BER IR AN,
head, A K P 5 45 o MRS A0 A3 J2. o 36 T
FH /N A8 e (IDWT) 45 2 H A4 FIRFAE R 1T
1" IDWT(i) e (6)
Horb, IDWT i/ A4 ARG /N AR e B,
iy R NNE S NN R ORIV G L DN R F N}
SEPUN JR SRR B AT R OREE, HIFHIE S
B B FSE s B = 15 ) AN BRHIE SR LA
HIR AR AR FE VT DL 0 7 30
Wavelet(l)=MultiHead" (Q, K", V", 1")
:MultiHeadW(IWQ, W, iwY, |') ©)
=Concat ( head,, ---, head,, , 1" )W°

Hrp, N, Bk eE, WO N, 5%
DL IR LG, RN AR Y JE, )
WA E IR B B R ) DWT-IDWT i £ A] BLZE A
TR R SARR TSR T, HRHE(E S AT 98 DS )
JRE BRSO AN, HE R R B R
B, R B i SCHL R RIS B TR S
AIIAC H .
1.3 ETHITEFENNHIRFHERM S35

T VATV B JIHLH (P RFAE kA 2% 1T DA BE 4
B AN (1) J2 2 1 R A RS PR G R AIE B TR 2 IR 5E )
FHIEE B BRI S . & FATER a5
MITHE, SRIEVRHE I 22 S A ARG 5, 0F B =) 350
25 IR SRS DLOR B s R RRAIE B — Bt m]
DUBE g 78 73 Hit ORAIE P PSS 28 UG AR AIE 58 B s 23K 1)

== GPAN
it

w4 froR, AFEER PR EGRHIE
Frg M Fopn BCRHIZ TR RIE®, BEYIHMH
— IS B Fog ® Fong o SIEE I ITE 1
W15 — SRR AR 24 3 38 T8 3 & /7 (Channel
Attention, CA) MJTHETL, FEidIEYERE b 5E k=
IS, DAy BHERRIE S B R B K EE,
ORI AR 2 M B AR B AR AE A B Y, 13 3@
BAMEW

W

W = CA(FHSI ® FSAR) (8)

R ST AR W R 58 S R 1 T AR
AR B B EREE S, 8 1B T EINE 76 B
—HPEER AR Ry AT

Fc :(W®FHSI)®(W®FSAR) (9)

—BUEER SRR R A2 155 2 SRS LS 1 AR Ry
AEAS B s B 7 RHIE — SO B E 5T, ZE R
BRA AL By 48 1 BB IE R 2 R 5 B IS
PG ) 2K B) 22 545 ADR BRI RAL,, 0 TS A ]
BARHER S A = RO THE M . 2 R B A R IE
Fo RUERIMZR, HE X 9:

FD = [\N ® FHSI oW ® FSAR| (10)

et o FRBILEME, || TR S 40
fi. I 52— SOMEIE T REE P, P2 PRI 2
i Fo 79 B0V 47 75 78 72 il 25 58 40 H4 (0 i 25 £ 18
Fep:

Fo=F. ®F, (11)

Fc
VAL
FHER
"
Fsar Fo
B 4 BT PATERE DN LR & 28

Fig.4 Feature fuser based on parallel attention mechanism
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Table 1 Comparative experimental results for the Augsburg dataset

No. A CNERMRRREAKO SVMI] Etf:;;ﬁ} TBCNNIT  ContextCNN! DFINetl*?] WPANet
1 AR (146/13345) 90.55 93.65 94.77 94.57 95.38 94.81
2 fE3EIX (264/30065) 89.81 86.81 95.01 97.25 95.84 93.66
3 TAkIX (21/3830) 23.03 35.12 7117 51.46 69.79 67.52
4 fIIEHIY) (248/26543) 83.73 83.21 85.33 86.25 86.65 95.49
5 FL&itth (52/523) 34.23 49.33 56.41 56.02 64.05 50.10
6 FDIX (7/1632) 9.71 7.94 15.14 13.68 13.86 19.91
7 K3 (23/1502) 45.92 44.99 22.30 2157 28.47 44.81
OA (%) 81.60 81.47 87.11 87.24 88.06 90.40
AA (%) 53.82 57.29 62.87 60.11 64.86 66.61
Kappa (%) 73.17 73.41 81.69 81.82 82.98 86.28

# 2 Berlin FIFEX LEIER
Table 2 Comparative experimental results for the Berlin dataset
LBP-

No. F CINZRMRREAZD VYIS £l TBCNNE7 ContextCNNL8I DFINet!! WPANet
1 Rk (443/54484) 50.08 86.17 76.47 77.22 68.95 69.35
2 41X (423/268219) 61.07 36.95 62.42 63.69 67.52 81.06
3 TalkIX (499/19067) 30.68 45.46 4322 61.44 43.42 62.22
4 ICHEIEY) (376/58906) 84.29 84.09 78.82 73.77 81.77 85.17
5 +3% (331/17095) 87.30 89.72 76.33 87.22 75.58 90.47
6 LA (280/13025) 54.00 0.00 73.44 82.88 80.05 61.21
7 FLIX (298/24526) 26.61 0.35 49.76 31.13 40.94 25.08
8 K3 (170/6502) 65.40 50.17 82.28 74.24 79.87 80.04
OA (%) 60.48 48.32 65.81 66.31 67.93 76.23
AA (%) 57.43 49.25 67.84 68.95 67.26 69.32
Kappa (%) 45.36 34.65 41.79 54.03 55.22 64.36
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(81.47%). (f) TBCNN (87.11%). (g) ContextCNN (87.24%). (h) DFINet (88.06%). (i) WPANet (90.40%).
Fig.6 Classification results of different methods on Augsburg dataset. (a) HSI image. (a) SAR image. (c) True value map. (d) SVM
(81.60%). (e) LBP-ELM (81.47%). (f) TBCNN (87.11%). (g) ContextCNN (87.24%). (h) DFINet (88.06%). (i) WPANet (90.40%).
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K 7 Berlin $dE4E AR LMK R, (@) HSI B4, (a) SAR 4. (c) E{H K. (d) SVM (60.48%). (¢) LBP-ELM
(48.32%). (f) TBCNN (65.81%). (g) ContextCNN (66.31%). (h) DFINet (67.93%). (i) WPANEet (76.23%).
Fig.7 Classification results of different methods on the Berlin dataset. (a) HSI image. (a) SAR image. (c) True value map. (d) SVM
(60.48%). (e) LBP-ELM (48.32%). (f) TBCNN (65.81%). (g) ContextCNN (66.31%). (h) DFINet (67.93%). (i) WPANEet (76.23%).
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SAR B g Z 1al k& Korik, U R
WPANet [ FH37 5, 7538 B UG AL BRI+
S35 oK T 22 1) S B S FH AR A

F 3Wavelet REZEAFATHER &3 HBISIR SR
Table 3 Results of ablation experiments with Wavelet

extractor and parallel attention fuser

OA (%)
o 24 45 14
Augsburg Berlin
2 R 3 B R 4% 87.27 73.86
+ Wavelet B 2% 89.71 75.86
+ AT R ST A % 88.96 75.17
Wavelet§E I 28+ AT & Il A 2% 90.40 76.23
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Abstract: Exploring the dependency relationships of multi-source remote sensing image data features to fully exploit the complementary advantages
between different modalities has become a prominent research direction in the field of remote sensing. Existing joint classification tasks of hyperspectral and
SAR data face two key challenges: 1) Insufficient feature extraction and representation in images, resulting in the loss of high-frequency information, which
hinders subsequent classification tasks; 2) Limited interaction among multi-source image features and weak correlation between multimodal features. To address
these challenges, research work has been conducted on robust feature representation and efficient correlation of multi-source features, proposing a multi-source
remote sensing image classification method based on wavelet transform and parallel attention mechanism. The feature extractor based on wavelet transform can
effectively utilize frequency domain analysis techniques, capturing coarse- and fine-grained level features during the process of reversible downsampling. The
feature fusion module based on the parallel attention mechanism comprehensively integrates the consistency and differences of multimodal remote sensing data,
accomplishing the fusion and generation of highly correlated features to enhance classification accuracy. Experimental results on two real multi-source remote
sensing datasets demonstrate the significant advantages of the proposed classification method. The overall accuracy on the Augsburg and Berlin datasets reaches
90.40% and 76.23% respectively, with at least a 2.66% and 12.22% improvement in overall accuracy compared to mainstream methods like DFINet on the two

datasets.
Keywords: Hyperspectral images(HSI); Synthetic aperture radar(SAR); Wavelet transform; Multi-source
feature fusion; Remote sensing images
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