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SAR Image Change Detection Based on
Multiscale Capsule Network
Yunhao Gao, Feng Gao , Junyu Dong , and Heng-Chao Li

Abstract— Traditional synthetic-aperture radar (SAR) image
change detection methods based on convolutional neural net-
works (CNNs) face the challenges of speckle noise and defor-
mation sensitivity. To mitigate these issues, we proposed a
multiscale capsule network (Ms-CapsNet) to extract the discrim-
inative information between the changed and unchanged pixels.
On the one hand, the multiscale capsule module is employed to
exploit the spatial relationship of features. Therefore, equivariant
properties can be achieved by aggregating the features from
different positions. On the other hand, an adaptive fusion convo-
lution (AFC) module is designed for the proposed Ms-CapsNet.
The higher semantic features can be captured for the primary
capsules. Feature extracted by the AFC module significantly
improves the robustness to speckle noise. The effectiveness of the
proposed Ms-CapsNet is verified on three real SAR data sets.
The comparison experiments with four state-of-the-art methods
demonstrate the efficiency of the proposed method. Our codes are
available at https://github.com/summitgao/SAR_CD_MS_CapsNet.

Index Terms— Change detection, deep learning, multiscale
capsule network (Ms-CapsNet), synthetic-aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC-APERTURE radar (SAR) imaging acquisi-
tion technologies have been developed rapidly. A plenty

of multitemporal SAR images are available to monitor the
changed information of the Earth. Therefore, SAR image
change detection has drawn an increasing attention recently.
Researchers have designed a variety of SAR change detection
methods for ecological surveillance, disaster monitoring [1],
and urban planning [2].

Although a plenty of techniques have been proposed [3],
the SAR image change detection is a still challenging task.
An image quality is deteriorated by speckle noise which
hinders the meticulous interpretation of SAR data. Many
methods are implemented to address the issue of speckle
noise. They are usually comprised of three steps: 1) image
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coregistration; 2) difference image (DI) generation; and 3) DI
classification [4]. Image coregistration is a fundamental task
to establish the spatial correspondences between multitemporal
SAR images. In the second step, the DI is commonly generated
by the log-ratio, Gauss-ratio [5], and neighborhood-ratio [6]
operators. For the DI classification step, more research works
are devoted to build a robust classifier. It is a nontrivial task
since a powerful classifier directly determines the precision of
change detection.

Many researchers are dedicated to developing powerful
classifiers for change detection. Li et al. [7] designed two-level
clustering algorithm for unsupervised change detection. In [8],
local neighborhood information is embedded in the clus-
tering objective function to improve the change detection
performance. Gong et al. [9] developed an improved Markov
random field (MRF) based on fuzzy c-means (FCM) clustering
to suppress the speckle noise. In [4], the stacked restricted
Boltzmann machines (RBMs) were employed for SAR image
change detection. Although the above methods achieved a
promising performance, the feature representation capabilities
are still limited.

In recent years, the convolutional neural network (CNN) has
greatly boosted the performance of many visual tasks. It is
demonstrated to be rather effective for robust feature learning.
CNN-based models have been successfully applied in remote
sensing image change detection [10]. Wang et al. [11] pro-
posed an end-to-end CNN framework to learn the discrimina-
tive features from mixed-affinity matrix for change detection.
Later, the unsupervised deep noise modeling was developed
for hyperspectral image change detection [12]. Liu et al. [13]
proposed an elegant local restricted CNN (LR-CNN) for
polarimetric SAR change detection. In [14], transferred deep
learning was applied to sea ice SAR image change detection
based on CNN. Although CNN-based methods have achieved
an excellent performance in change detection, the accuracy
sometimes deteriorates under the case of transformation, such
as tilts and rotations. Specifically, CNN is incapable of mod-
eling the positional relationship among ground objects.

More recently, Sabour and Hinton proposed the capsule
network (CapsNet) to provide solutions to problems where
CNN models are inadequate [15]. In CapsNet, an activity
vector from capsules represents the entity instantiation para-
meters such as pose, texture, and deformation. The existence of
entities is expressed by the length of instantiation parameters.
The dynamic routing mechanism is utilized for information
propagation. It is empirically verified that the CapsNet is
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Fig. 1. Illustration of the proposed change detection method based on Ms-CapsNet. First, image patches are fed into AFC module for higher semantic
features. Then, multiscale primary capsule layers are adopted with kernel 3× 3 and 5× 5 to obtain the primary capsules v p1 and v p2. Later, v p1 and v p2 are
input to conv-capsule layer and class capsule layer, respectively. Finally, fuse the output of class capsule layers to calculate the final result.

effective for remote sensing image analysis [16], [17]. As far
as we know, the literature on the CapsNet-based SAR change
detection is very sparse.

We argue that the weakness of the existing SAR image
change detection approaches mainly comes from two aspects:
One is the correlation of features from different positions,
which fails to be modeled effectively and the other one lies
in the intrinsic speckle noise in SAR images. To tackle the
aforementioned issues, a multiscale CapsNet (Ms-CapsNet)
is proposed to extract the discriminative information between
multitemporal SAR images. The proposed Ms-CapsNet has a
similar structure with the CapsNet [15] without the multiscale
operator and the adaptive fusion convolution (AFC) module.
The Ms-CapsNet provides a group of instantiation parameters
to capture the features from different positions. To tackle
the problem of speckle noise, the AFC module is designed
to convert the pixel intensities to the activities of the local
features. Accordingly, local features become noise robustness.
Extensive experiments on three real data sets are conducted to
show the superiority of the proposed method over four state-
of-the-art works.

For clarity, the main contributions are summarized as
follows.

1) The proposed Ms-CapsNet has the capability to extract
the robust features from different positions. The
equivariant properties can be achieved by the capsule
module. Therefore, the demand for a large amount
of training samples is reduced by the correlative and
complete information.

2) A simple yet effective AFC module is designed, which
can effectively convert pixel intensities to the activities
of local features. The AFC module extracts the higher
semantic features and emphasizes the meaningful one
through attention-based strategy. Therefore, the activ-
ity of local features becomes more noise robustness
and immediately accepted as the input of the primary
capsule.

3) Extensive experiments have been implemented on three
SAR data sets to validate the effectiveness of the pro-
posed method. Moreover, we have released the codes
and setting to facilitate future research in multitemporal
remote sensing image analysis.

II. METHODOLOGY

The proposed method is shown in Fig. 1. A DI is first
generated by the log-ratio operator. Then, the training samples
are selected randomly from DI for Ms-CapsNet. Finally, pixels
in the DI are classified by the trained Ms-CapsNet to obtain
the final change map.

In our implementations, the Ms-CapsNet is comprised of
AFC and capsule modules. The AFC module is used to
convert pixel intensities to high semantic features, through
which the speckle noise is suppressed to some extent. The
capsule module is utilized to activate high semantic features.
In Sections II-A and II-B, we will describe both the modules in
detail.

A. AFC Module

As shown in Fig. 2, the proposed AFC module is utilized
to encode the input. Recently, some studies suggest that
the long-range feature dependencies can be captured by the
self-attention mechanism. Hu et al. [18] demonstrated it in
large-scale image recognition task. In this letter, we introduce
the self-attention mechanism into the SAR image change
detection task and designed a simple yet effective AFC
module. First, a set of convolutions (Conv 1–1, Conv 1–2,
and Conv 1–3 with kernel size 3 × 3) are employed with
different dilation rates, which are set to 1, 2, and 3, respec-
tively, to capture multiscale features. Then, the multiscale fea-
tures are aggregated by feature fusion based on channel-wise
attention (CA).

The input features Fin ∈ R
w0×w0×c0 from atrous convolu-

tion are fed into CA. Then, global average pooling (GAP)
squeezes Fin in the spatial domain to obtain Favg ∈ R

1×1×c0 .
Then, 1-D convolution (1D-Conv) is employed to explore
the channel relationship of Favg. After the Sigmoid function,
a channel weighting-based vector M can be obtained. Finally,
the channel weighting-based feature Fout can be computed
as Fout = M ⊗ Fin, where ⊗ denotes channel-wise mul-
tiplication. Therefore, the channel weighting-based features
from Conv 1–1, Conv 1–2, and Conv 1–3 are F1, F2, and F3,
respectively. We fused the features by pixel-wise summation
as

F = D1(F1)+ D2(F2)+ D3(F3) (1)
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Fig. 2. Illustration of the AFC module.

where F represents the fused features, and D1, D2, and D3 are
dimension matching functions which are operated by 1 × 1
convolution.

B. Capsule Module

The capsule module is a neural network comprised of the
primary capsule layer, conv-capsule layer, and fully connected
layer, as shown in Fig. 1.

1) Primary Capsule Layer: This layer is employed to
extract the low-level features from multidimensional entities
through convolutional-like operation with kernel size k × k.
Different from traditional convolution, multiple feature maps
will be obtained instead of one. The primary capsule layer first
receives the feature map F ∈ R

w×w×c from the AFC module.
Then, convolutional-like operation and squashing activation
function are employed to obtain the output capsules v p. The
squashing activity function is denoted as

v = �s�2

1+ �s�2

s

�s� (2)

where s is the total input, and v is the vector output of capsule.
In the primary capsule layer, the size of the output capsules
v p is w1 × w1 × n × d , where n is the number of feature
maps, n×d = c, and d = 8. The [w1×w1] grid is the shared
weights. In other words, we obtain [w1 ×w1 × n] 8D vectors
in total primary capsules. In our implementations, multiscale
information is taken into account. Two primary capsule layers
are employed with kernel size k = 3 and k = 5, respectively.
Therefore, multiscale feature representation can be obtained.
Feature vectors from two scales are denoted by v p1 and v p,
respectively.

2) Conv-Capsule Layer: This layer uses local connections
and the shared transformation matrix to reduce the number of
parameters to some extent [17]. Conv-capsule layer uses the
dynamic routing strategy to update the coupling coefficient c.
The connection (transformation matrix) between the primary
capsule layer and the conv-capsule layer is W , and the
transformation matrix W is also shared in each grid. Therefore,
the output vc of the conv-capsule layer can be expressed as

vc = squashing(
∑

c · u) (3)

where c is the coupling coefficient, and u = W · v p. v p is
the output of the primary capsule layer. For dynamic routing,
we first set the agreement b to 0. The coupling coefficient c can
be calculated by c = so f tmax(b). That is to say, we update
b to calculate the latest coupling coefficient c. In addition,
the update process of b can be expressed as b ← b + u · vc.
The detailed descriptions of the dynamic routing can be found
in [15].

3) Class Capsule Layer: The class capsule layer can be
considered as a fully connected layer. Dynamic routing mech-
anism is still used for coupling coefficient updating. In this
layer, multiscale activity vectors vo1 ∈ R

2×16 and vo2 ∈
R

2×16 from class capsule layer are fused by summation vo =
vo1 ⊕ vo2. Then, the vector norm is calculated to measure the
probability of classes. The loss function of Ms-CapsNet can
be defined as

L = Tk max(0, m+ − �vo�)2

+ λ(1− Tk) max(0, �vo� − m−)2 (4)

where Tk = 1 when the label k is presented (k = 0 means
the unchanged class, and k = 1 means the changed class).
λ = 0.5 is used to constrain the length of the activity vector
of the initial class capsule. If there is a changed class object
in the image, the class capsule of the changed class should
output a vector with a length of at least m+ = 0.9. On the
contrary, if there is no object of the changed class, a vector
with a length less than m− = 0.1 will be output from the
class capsule. Then, the final change map can be calculated
by pixel-wise classification.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first describe the data sets and evaluation
criteria in our experiments. Next, an exhaustive investigation of
several vital parameters on the change detection performance
is presented. Finally, we conduct extensive experiments to
verify the effectiveness of the proposed method.

A. Data Set and Evaluation Criteria

To verify the effectiveness of the proposed method,
we employed Ms-CapsNet on three multitemporal SAR data
sets acquired by different sensors. The first data set is the
Sulzberger data set. It is captured at Sulzberger Ice Shelf
by ENVISAT satellite of the European Space Agency on
March 11 and 16, 2011, respectively. The size of the data set
is 256×256 pixels, as shown in the first row of Fig. 3(a)–(c).
The other two data sets named Yellow River I and Yellow
River II are captured at the Yellow River Estuary by Radarsat-2
in June 2008 and June 2009, respectively. Their sizes are
257 × 289 and 306 × 291 pixels, respectively. It is very
challenging to perform the change detection on the Yellow
River data set since the speckle noise is much stronger. The
geometric corrections have been performed on these data sets,
and the ground truth images were manually annotated carefully
with expert knowledge.

In the following experiments, the proposed Ms-CapsNet is
compared with four closely related methods, including the
PCA-based neural networks (PCANet) [19], the transferred
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Fig. 3. Visualized results of different change detection methods on three data sets. (a) Image captured at t1. (b) Image captured at t2. (c) Ground truth image.
(d) Result by PCANet. (e) Result by MLFN. (f) Result by DCNN. (g) Result by LR-CNN. (h) Result by the proposed Ms-CapsNet.

Fig. 4. Relationship between the PCC values and patch size.

multilevel fusion network (MLFN) [14], the deep CNNs
(DCNN) [20], and the CNN with local spatial restrictions
(LR-CNN) [13]. To verify the effectiveness of the proposed
Ms-CapsNet, false positives (FPs), false negatives (FNs), per-
centage correct classification (PCC), overall errors (OEs), and
Kappa coefficient (KC) are adopted as the evaluation criteria.

B. Parameter Analysis of the Proposed Ms-CapsNet

1) Analysis of the Patch Size: The patch size r represents
the scale of spatial neighborhood information. Fig. 4 shows
the relationship between r and PCC, where r is changed
from 5 to 17. As shown in Fig. 4, the PCC values increase
first and then tend to be stable. It is evident that the contex-
tual information is important for change detection. However,
a large patch size will increase the computational cost. There-
fore, we choose r = 9 for the Sulzberger and Yellow River I
data sets, and r = 11 for the Yellow River II data set.

2) Analysis of the Training Sample Numbers: Table I shows
the comparison of the Ms-Capsule with other methods on the
Yellow River II data set when considering a different number
of training samples, i.e., 200, 400, 600, 800, and 1000. We can
observe that the accuracy of other methods drops sharply when
the number of samples is less than 600. Especially, DCNN
and LR-CNN depend heavily on large volumes of training
data, and few training samples will lead to overfitting which

TABLE I

RELATIONSHIP BETWEEN THE PCC VALUES AND THE
NUMBER OF TRAINING SAMPLES

TABLE II

ABLATION STUDIES (PCC) OF THE PROPOSED MS-CAPSNET

degrades the performance. In summary, the PCC values of the
proposed method are less afflicted with the training sample
numbers. It is because the feature spatial correlations can
reduce the dependence on training samples to some extent.

3) Ablation Studies: We conduct experiments to compare
the performance of several variants of our method for ablation
studies. The qualitative results are shown in Table II. The
full model represents the proposed Ms-CapsNet. CapsNet
denotes the traditional CapsNet [15] without AFC module
and multiscale operator. In addition, we implement our model
without AFC module (w/o AFC) and without multiscale oper-
ator (w/o multiscale). It can be observed that both multiscale
operator and the AFC module can boost the change detection
performance. The PCC values improve 0.14, 0.23, and 0.08 by
the multiscale operator on three data sets, respectively. This
is because the multiscale operator is beneficial to enrich the
feature representations. In addition, the PCC values improve
0.36, 0.46, and 0.46 by the AFC module on three data sets,
respectively. It is evident that local features can be effectively
converted for primary capsules.
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TABLE III

CHANGE DETECTION RESULTS ON THREE DATA SETS

C. Change Detection Results on Three Data Sets

In this section, the proposed method is compared with four
closely related methods. The quantitative results and visual
results with all competitors are shown in Table III and Fig. 3,
respectively.

Fig. 3(d)–(h) shows the change maps corresponding to the
experiments as presented in Table III. On the Sulzberger data
set (the first row of Fig. 3), the result of PCANet tends to be
rather noisy, and it is afflicted with high FP value. Although
other methods generally performed well, the results are dete-
riorated due to higher OE values. The proposed Ms-CapsNet
exhibits less misclassified pixels and obtains the best PCC and
KC values.

On the Yellow River I and II data sets (the second and third
rows of Fig. 3), we can observe that the proposed Ms-CapsNet
achieves at least 0.5% improvement over other compared
methods. Considering that the interference of different char-
acteristics of speckle noise weakens the model performance,
the proposed method is relatively noise robust. The PCANet
suffers from high FP value, and there are many noisy regions
in the generated change maps. LR-CNN performs better since
local spatial restrictions can balance the influence of local
noise. CNN-based methods can suppress noise interference
to some extent through deep feature representation. However,
relatively high OE values are still obtained. In general, the pro-
posed Ms-CapsNet exhibits the best performance as shown
in Table III and Fig. 3. It reveals that the proposed Ms-CapsNet
benefits from the spatial relation exploration.

IV. CONCLUSION

In this letter, the Ms-CapsNet is proposed for SAR image
change detection. The Ms-CapsNet benefits from two aspects:
first, to enhance the spatial feature correlations, a multiscale
capsule module is utilized to model the spatial relation-
ship of features between one object and another. Equivariant
properties can be achieved by aggregating the feature from
different positions. Furthermore, we design an AFC module
to alleviate the interference of speckle noise. The module can
effectively convert the pixel-wise intensities to the activity of
local features. Extensive experiments are conducted on three
SAR data sets, and the experimental results demonstrate the
superior performance of the proposed method.
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