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Change Detection From Synthetic Aperture Radar
Images Based on Channel Weighting-Based
Deep Cascade Network

Yunhao Gao, Feng Gao

Abstract—Deep learning methods have recently demonstrated
their significant capability for synthetic aperture radar (SAR)
image change detection. However, with the increase of network
depth, convolutional neural networks often encounter some nega-
tive effects, such as overfitting and exploding gradients. In addition,
the existing deep networks employed in SAR change detection tend
to produce a lot of redundant features that affect the performance
of the network. To solve the aforementioned problems, this article
proposed a deep cascade network (DCNet) for SAR image change
detection. On the one hand, a very DCNet is established to exploit
discriminative features, and residual learning is introduced to solve
the exploding gradients problem. In addition, a fusion mechanism
is employed to combine the outputs of different hierarchical layers
to further alleviate the exploding gradient problem. Moreover, a
simple yet effective channel weighting-based module is designed for
SAR change detection. Average pooling and max pooling are used
to aggregate channel-wise information. Meaningful channel-wise
features are emphasized and unnecessary ones are suppressed.
Therefore, the similarity in feature maps can be reduced, and
then, the classification performance of the DCNet is improved.
Experimental results on four real SAR datasets demonstrated that
the proposed DCNet can obtain better change detection perfor-
mance than several competitive methods. Our codes are available
at https://github.com/summitgao/SAR_CD_DCNet.

Index Terms—Change detection, deep cascade network (DCNet),
deep learning, residual learning, synthetic aperture radar (SAR).

1. INTRODUCTION

ITH the rapid development of earth observation pro-

grams, many synthetic aperture radar (SAR) sensors
have been developed for spaceborne systems. A great number of
SAR images captured at different times over the same geograph-
ical area are available. These images are increasingly important
for many scientific applications, such as change detection [1],
disaster monitoring [2], urban planning [3], etc. Among these
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applications, change detection has become an important topic in
the SAR community.

SAR change detection is to detect the changed information of
the same geographical area by analyzing two images captured
in different periods. Since SAR sensors have the capabilities
of all-weather and all-time observation, they are widely used
in change detection. However, it is very difficult to identify the
changed information between multitemporal SAR images, since
SAR images generally suffer greatly from the speckle noise. It
subdues the visual quality of the images for interpretation and
hinders the automatic information extraction by remote sensing
image processing software. Therefore, it is essential to develop
robust and reliable methods that can effectively suppress the
speckle noise.

To solve the problem, many supervised and unsupervised
methods have been developed to reduce the speckle noise for
SAR change detection in the past few years. Supervised methods
require prior knowledge to collect reliable training samples to
obtain arobust classifier [4], [S]. On the other hand, unsupervised
change detection methods directly compare the input multitem-
poral SAR images without any additional information [6], [7].
The unsupervised change detection is more popular, since it is
sometimes difficult to obtain prior knowledge. Therefore, in this
article, we focus on developing change detection method in an
unsupervised manner.

Existing unsupervised SAR image change detection methods
are generally composed of the following three steps: 1) image
preprocessing, 2) difference image (DI) generation, and 3) DI
classification. In the first step, geometric registration is gener-
ally involved and plays a fundamental role. In DI generation,
the log-ratio operator is commonly used, and the operator is
capable to transform multiplicative speckle noise into an ad-
ditive one. Besides the log-ratio operator, Gauss-ratio [8] and
neighborhood-based ratio [9] operators are also proposed to
generate DI, which is robust to calibration errors [10]. For DI
classification, clustering methods [11], [12] are widely used.
They are considered to be robust to noise since the contex-
tual information is taken into account. Gong et al. [11] pro-
posed a method that detects changed regions by fuzzy c-means
(FCM) clustering with an improved Markov random field (MRF)
energy function. The method can achieve excellent perfor-
mance in speckle noise suppression. In [13], a multiple kernels
k-means clustering method with neighborhood information was
presented to solve the problem of change detection. Besides
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these clustering methods, many advanced methods have been
employed for speckle noise suppression, such as level-set al-
gorithm [14], joint dictionary learning [15], Bayesian soft fu-
sion [16], curvelet [17], and canonical correlation analysis [18].

Recently, many researchers consider the unsupervised change
detection task as an incremental learning problem. Specifically,
the change detection process simulates the brain-like pattern
recognition mechanism. Children attempt to understand the
world through prior knowledge provided by their parents, and
the knowledge helps them form their interpretations of the sur-
roundings. Similarly, SAR change detection can be formulated
as the following steps [19]: First, an initial change map is
created by clustering methods. After that, training samples are
selected, and then, fed into a learning system for training. The
selected samples can be considered as prior knowledge. Finally,
the system provides its interpretations of the changed informa-
tion and generates a change map. Gao et al. [20] presented a
hierarchical FCM clustering framework for sample selection,
and the extreme learning machine (ELM) is employed as the
classifier. Wang et al. [21] proposed an imbalanced learning
method for SAR change detection, in which samples along the
boundary between changed and unchanged regions are selected
for training. These methods use shallow models as classifiers,
and the feature representation capabilities are limited.

Deep learning models, which contain many hidden layers,
are capable of extracting discriminative features. These models
have made dramatic improvements in things like natural lan-
guage processing [22], [23], saliency detection [24], [25], and
objection detection [26], [27]. Recently, deep learning methods
have attracted a lot of attention in the remote sensing community.
Many deep learning techniques have been proposed to solve the
problem of change detection. In [28], an FCM-based classifier
was designed for reliable sample selection, and a deep belief
network (DBN) was employed for SAR image change detection.
Ghosh et al. [29] proposed a modified Hopfield type neural
network (HTNN) for change detection. Zhang et al. [30] utilized
a DBN to learn the invariant features from the input images,
and then, the clustering algorithm was employed to generate
the change map. Planinsic and Gleich [31] presented a change
detection algorithm based on stacked autoencoder (SAE). Fea-
tures were extracted by discrete wavelet transform, and then,
these features were fed into SAE to distinguish changed and
unchanged pixels. Gong et al. [32] utilized a DBN to analyze the
changed information using spectral, textual, and spatial features
for multispectral image change detection. Hou et al. [33] pre-
sented a change detection method by combining deep features
and saliency computation using a low-rank algorithm. Zhan et al.
[34] proposed a refined deep siamese convolutional neural net-
work (CNN) model to extract distinct features between changed
and unchanged class. In [35], stacked denoising autoencoders
are employed to extract features from multitemporal images,
and the influence of speckle noise can be alleviated. Su and
Cao [36] utilized the fuzzy autoencoder to detect changes from
multitemporal images. Later, Liu ef al. [37] proposed an elegant
local restricted convolutional neural networks (LR-CNN) for
polarimetric SAR change detection. The spatial constraint of
the pixels is formulated as an extra regularization term in the
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loss function, and it is imposed on the output layer of the CNN.
The spatial constraint is demonstrated to be effective in speckle
noise suppression.

Recent studies show that the network depth is of considerable
significance in classification, and the leading results of the
visual recognition tasks [38] [39] all exploit features from very
deep networks. However, in the SAR change detection task,
discriminant features from very deep architectures have rarely
been sufficiently exploited. Therefore, building a very deep net-
work for SAR change detection can capture more discriminant
features, and thus, could further enhance the change detection
performance.

In this article, we aim to develop an SAR change detection
method with very deep architectures. To design such a technique,
it involves the following two problems.

1) Exploding gradients: With the increase of network depth,
error gradients accumulate, and thus, result in substan-
tial gradients. These error gradients result in an unstable
network.

2) Redundant features: Every convolution operation gener-
ates a set of feature maps. Previous studies have shown that
deep networks tend to produce a lot of redundant features
that are very similar.

These unnecessary features also affect the performance of the

network.

To solve the aforementioned problems, we proposed a very
deep cascade network (DCNet) to extract invariant and discrim-
inative features for multitemporal SAR image change detection.
Different from the cascade method in [40], the feature extractors
of different levels are cascaded sequentially in this article. First,
the input images are preclassified by the FCM, and pseudola-
beled samples are selected. Then, these samples are fed into
the DCNet for training. The residual learning is introduced to
optimize the convolutional layers, and the degradation problem
from increasing depth of the model can be alleviated. Besides,
a channel weighting-based residual block is designed to exploit
the interchannel relationship of features. Moreover, outputs of
different hierarchical layers are fused to form the final feature
set. Finally, unlabeled samples from the input multitemporal
SAR images can be classified by DCNet. The final change map
can be obtained by combining the DCNet classification result
and the preclassification result. Experimental results on four real
SAR image datasets demonstrate the superiority of the proposed
DCNet over several state-of-the-art methods.

In summary, the main contributions of this article are as
follows.

e To alleviate the exploding gradients problem, feature fu-
sion mechanism and residual learning are introduced to
improve the efficiency of training. Residual learning opti-
mizes the training by optimizing the convolutional layers.
Besides, a fusion mechanism is employed to combine the
outputs of different hierarchical layers. Such feature fusion
can be considered as an extended version of residual learn-
ing, and then, the exploding gradient problem is further
alleviated.

* A simple yet effective channel weighting-based module is
designed to solve the feature redundancy problem. Average
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Schematic illustration of the proposed change detection method based on channel weighting-based DCNet. First, preclassification is implemented by

hierarchical FCM, and reliable training samples are selected. Then, sample image patches are generated and fed into the DCNet for training. In the DCNet,
channel weighing-based residual learning is adopted to improve the efficiency of training by optimizing the convolutional layers, and the outputs of several
hierarchical layers are fused to extract discriminative features. Finally, the change map can be obtained by combining the preclassification result and the DCNet

classification result.

pooling and max pooling are used to aggregate channel-
wise information. After that, meaningful channel features
are emphasized, and unnecessary ones are suppressed.
Therefore, the similarity problem in feature maps can be
alleviated, and the classification performance of the DCNet
is improved.
® We conducted extensive experiments on several real SAR
datasets to validate the effectiveness of the proposed DC-
Net. In addition, we released our codes and parameters to
facilitate future research in SAR image change detection.
The rest of this article is organized as follows. We describe
the proposed DCNet in Section II. Section III provides the
experimental results on real multitemporal SAR images to verify
the effectiveness of the proposed DCNet. Finally, we conclude
this article in Section IV.

II. METHODOLOGY

Given two coregistered SAR images, I; and [, captured at
different times over the same geographical region, we aim to
produce a binary change map that shows the change information
between both images. In the binary change map, changed pixels
are marked as “1” and unchanged pixels are marked as “0.”

As illustrated in Fig. 1, the proposed method contains the fol-
lowing two parts: 1) preclassification and pseudolabeled samples
generation; and 2) classification by the DCNet and final change
map generation. In this section, we first describe the process
of preclassification, then present the detailed structure of the
proposed DCNet. At last, the change map generation process is
revealed.

A. Preclassification and Reliable Samples Selection

The log-ratio operator is first adopted to generate a DI. It is
widely acknowledged that the influence of speckle noise can
be reduced by the log-ratio operator considering the multiplica-
tive nature of speckle in SAR images. Therefore, the speckle
noise can be suppressed to some extent. After obtaining the

1 rXrx2
R,

Fig. 2. Process of sample image generation. An image patch Riof the size

r x ris extracted from /7 and the corresponding image patch Ri is extracted
from I5. Both image patches are concatenated to a new image Ry, with the size
of r X r x 2.

DI, the hierarchical clustering algorithm [20] is utilized for
DI classification. In the hierarchical clustering algorithm, the
FCM algorithm is used to divide DI into multiple clusters. Then,
some clusters will be combined. Finally, three clusters {€2., 2.,
Q,} will be generated. 2. and €2, represent the changed class
and unchanged class. €2; represents the uncertain class. Pixels
belonging to €2, and (2, are selected as reliable samples for the
proposed DCNet. Pixels in 2; will be further classified by the
DCNet.

For the task of SAR image change detection, contextual
information is essential to achieve robust feature representa-
tion [28]. Therefore, image patches centered at selected samples
are extracted from the potential changed area of the original SAR
images, as shown in Fig. 2. R} denotes the image patch centered
at pixel k in I, and R? denotes the corresponding image patch
in I5. The size of each patch is r x r. Both patches are combined
to form a new image R}, with two channels, and the size of Ry
isrxrx2.

B. Deep Cascade Network (DCNet)

Due to the existence of speckle noise, only 3—5 convolutional
layers can hardly extract discriminant features from multitempo-
ral SAR images. However, as the network depth increasing, the
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Fig. 3. Tllustration of one typical residual block. Fitting the residual map-

ping F'(z) is more easier than fitting H (x). The degradation problem can be
effectively alleviated, and deeper network depth can be achieved.

exploding gradient problem may occur, and the accuracy gets
saturated. To alleviate the problem, we introduce the residual
learning [41] and batch normalization to optimize the convo-
Iutional layers. In addition, a fusing technique is employed to
make full use of the features from different layers. Moreover, the
channel-weighting module is designed to exploit the interchan-
nel relationship of features. Fig. 1 gives a detailed diagram of
the proposed DCNet. The DCNet contains two important com-
ponents: channel weighting-based residual block and feature
fusion module. In the following subsections, we will describe
the following two parts in detail.

1) Channel Weighting-Based Residual Block: Residual
learning presented good performance in the degradation prob-
lems. As reported in [41], the residual networks are much easier
to be trained, since most values of the residual image are likely
to be zero or tend to be small. One typical residual block
is illustrated in Fig. 3. It directly connects the input and the
output by a shortcut pathway within the block. Mathematically,
let H(x) denotes the desired underlying mapping, the residual
mapping F'(z) can be denoted by

F(z) = H(x) — x. (1)

Therefore, the mapping of the residual block equals to the output
of a typical CNN. Fitting a residual mapping F'(z) is easier than
fitting the original H (x). When H () is a near identity mapping,
the processing of training is very efficient in the residual block.

Recently, the attention mechanism is incorporated in large-
scale classification tasks. Humans do not process the whole
scene at a glance. Instead, humans can selectively focus on the
most salient parts of the scene, and therefore, obtain a better
understanding of the visual structure. Hu et al. [42] designed
a squeeze-and-excitation (SE) module that can exploit the in-
terchannel relationship. In the module, global average-pooled
features are used to achieve attention. Inspired by Hu’s work,
max pooling is also introduced to achieve better channel-wise
attention in this article. We design a channel weighting-based
residual block for the DCNet as shown in Fig. 4. The input
feature map x € R*>*"*¢ is fed into the convolutional layer to
obtain F'. And, F'is squeezed in the spatial domain by average
pooling and max pooling operators. Then, local statistical infor-
mation from local receptive fields is aggregated. Two different
spatial feature descriptors Fyy, € R11¥¢ and Fx € R¥1C
are generated.

Both feature descriptors are then fed into two fully connected
(FC) layers, respectively. The fully connected (FC) layers are
utilized to parameterize the gating mechanism. W, € R7*¢

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 11, NOVEMBER 2019

F,
(D%
i S M i
o
F o
) F max
Previous s 41\; n Next
blocks I & Pogy 7 Iblocks
" e
Input rant
1 | feature 1
1 1
1 1
Fig. 4. Illustration of the channel weighting-based residual block.

represents the weights in the FC layer handling Fyg, and W, €
R 7 %€ represents the weights in the FC layer handling Fi. t is
the dimensionality-reduction ratio to limit model complexity. In
our experiments, we set ¢ to 4.

In the last FC layer, the weight W5 € R % is shared between
the average-pooling features and the max-pooling features. After
the shared FC layer is applied, the output feature vectors are
merged using element summation. The channel weighting-based
vector M is computed as

M = O'(WQ(;(WOFan) + W25(W1Fmax)) (2)

where M is a learnable one-dimensional vector M € R1*1x¢
which represents a nonmutually-exclusive relationship (M =
[My, Ms, ... M_]). It should be noted that the ReLU function
0 is used in the first FC layer. o denotes the sigmoid function,
and the output from the last FC layer is mapped to the range of
0-1. Thus, opposed to one-hot activation, multiple channels are
allowed to be emphasized. Larger M. means that the information
of the cth feature map in F' is emphasized. Finally, the channel
weighting-based feature Fi,, can be denoted as

FCW:M®F (3)

where F' is the feature before pooling. ® denotes channel-wise
multiplication to broadcast the attention values. Finally, the out-
put of the channel weighting-based residual block is calculated
by elements-wise summation of Fiy, and the input feature x.
The proposed method achieves a deeper network depth by
cascaded channel weighting-based residual blocks with dif-
ferent parameters. Cascaded residual blocks can fully extract
the feature information of SAR images, and is not prone to
degradation and overfitting. In addition, there are three groups of
channel weighting-based residual blocks in the proposed DCNet
as illustrated in Fig. 1. They are utilized to extract low-, mid-,
and high-level features, respectively. The first group of residual
blocks can extract minor details of the image, such as small
lines or dots. Then, the second group of residual blocks can
extract mid-level features that correspond to a combined output
of low-level features. Then, the third group of the residual block
can capture the structured information and semantic context
of the input data. Each group is comprised of four channel
weighting-based residual blocks that have the same parameters.
2) Feature Fusion: Recently, feature fusion has attracted
wide attention due to its excellent performance in computer
vision tasks. Zhao et al. [43] proposed an end-to-end network
that fused a variety of features for classification. In [44], deep
features extracted from two fully connected layers were fused
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for remote sensing scene classification. Song et al. [45] proposed
a deep learning model in which the outputs of different layers
were fused for the hyperspectral image classification. Inspired
by these studies, we introduce the feature fusion strategy to
investigate the complementary information in three groups of
channel weighting-based residual blocks for SAR image change
detection. Moreover, the feature fusion strategy works in similar
ways as residual learning. Specifically, residual learning com-
bines features of the same scale, while the feature fusion strategy
combines features from different scales. Therefore, the feature
fusion strategy can be viewed as an extended version of residual
learning, and thus, the exploding gradient problem can be further
alleviated.

Different levels of cascade residual blocks may capture in-
formation of different scales, including coarse or fine scales.
Therefore, fusion of different level features of cascade residual
blocks is very important for accurate change detection. The
features from three channel weighting-based residual block
groups are denoted as F'1, F'5, and F3, respectively. F'; contains
16 feature maps, F5 contains 32 feature maps, and F'3 contain
64 feature maps. The most important issue in feature fusion is
dimension matching. In order to achieve this, 64 kernels are used
to convolve Fi, F5, and F5. The size of each kernel is 1 x 1.
After such convolution, the numbers of three groups of output
all become 64. After that, the fusion process can be achieved by
pixel-wise summation as follows:

F=gi(F1)+ g2(F2)) + g5(F3) 4)

where F represents the fused features, and g1, g2, and g3 are the
operation of dimension matching.

C. Final Change Map Generation

After obtaining the fused features F, they are transformed
into a vector through several fully connected layers. Then, the
feature vector is fed into a softmax layer to calculate the
possibility to be changed or unchanged. The output of the fully
connected layer is denoted as (F,,, F'..), and it is hard to express
the probability distribution of output. Therefore, the softmax
layer is employed to calculate the possibility

BFC

Pe = Fog e ®
F
e u

i ©

where p. and p, denote the possibility to be changed and
unchanged, respectively. F',, represents the first output node of
the proposed DCNet, and F'. represents the second output node
of the proposed DCNet. If p. > p,,, the pixel is considered to be
changed, otherwise, the pixel is considered to be unchanged.

As mentioned before, pixels belonging to {2, and €2, are
treated as training samples for the proposed DCNet. After ob-
taining a trained model, pixels in €2; can be classified by the
model. Finally, the DCNet classification result and the preclas-
sification result can be combined together to form a map. In the
map, changed pixels are marked as “1” and unchanged pixels
are marked as “0.”
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TABLE I
DETAILS OF THE PROPOSED DCNET

Type Kernel size Layers Output  Output size
Conv 3x3 1-9 16 28x28x16
Conv 3x3 10 32 14x14%32
Conv 3x3 11-18 32 14x14x32
Conv 3x3 19 64 TxTx64
Conv 3x3 20-27 64 Tx7%x64

Pooling — 28 — 1x1x64

FC — 29 2 —

(b)

Fig. 5. Ottawa dataset. (a) Image captured in May 1997. (b) Image captured
in August 1997. (c) Ground-truth image.

Table I shows the implementation details of the proposed DC-
Net (where the input is resized as 28 x 28, and 27 convolutional
layers are implemented). In the pooling layer, we use global
average pooling, and FC means the fully connected layer.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first describe the datasets used in our
experiments. After that, the evaluation criteria are introduced
in detail. Next, an exhaustive investigation of several important
parameters on the change detection performance is presented.
Finally, the proposed method is compared with several excellent
methods.

A. Dataset and Evaluation Criteria

In order to verify the effectiveness of the proposed DCNet,
we employed the proposed method on four multitemporal SAR
datasets acquired by different sensors. Coregistration and geo-
metric corrections have been done on these datasets. Since the
ground-truth data are crucial for the accuracy assessment, the
ground-truth change maps were manually annotated carefully
with expert knowledge.

The first dataset is the Ottawa dataset, which is captured
by the Radarsat sensor. As shown in Fig. 5, it presents two
SAR images captured over the city of Ottawa. The size of
the images is 290 x 350 pixels. The dataset was provided by
the National Defense Research and Development Canada. Both
images are acquired in May 1997 and August 1997, respectively.
The images show changed regions that were afflicted by floods.
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(b) ()

Fig.6. Sulzberger I dataset. (a) Image captured in March 11in2011. (b) Image
captured in March 16 in 2011. (¢) Ground-truth image.

Fig. 7. Sulzberger II dataset. (a) Image captured in March 11 in 2011.
(b) Image captured in March 16 in 2011. (c) Ground-truth image.

The available ground-truth change map was manually annotated
by experts with rich knowledge in photointerpretation.

The next two datasets (Sulzberger I and II) are selected from
two large SAR images from one ice shelf. Both images were
taken by the Envisat satellite of the European Space Agency
on March 11 and 16, 2011, respectively. The two images show
the process of the sea ice breakup. In March 2011, the Tohoku
Tsunami was triggered in the Pacific Ocean, and massive ocean
waves caused the Sulzberger Ice Shelf to flex and break. The
original size of the two SAR images is 2263 x 2264 pixels. It
is difficult to display detailed information in such huge images.
Therefore, we chose two typical regions (256 x 256 pixels in
each area). The available ground-truth images are generated
by integrating prior knowledge and photointerpretation. The
Sulzberger I dataset is shown in Fig. 6, and the Sulzberger 11
dataset is shown in Fig. 7.

The last dataset is the Farmland dataset, which is selected
from two SAR images captured over the Yellow River Estuary
in China. Both SAR images were acquired by Radarsat-2 in June
2008 and June 2009, respectively. The original size of the two
imagesis 7666 x 7692 pixels. Similar to the Sulzberger datasets,
one typical region is chosen to demonstrate the efficacy of the
proposed DCNet. The changed areas show newly cultivated
farmland. The dataset is shown in Fig. 8. It should be noted that
one image is a single-look image, and the other is a four-look
image. Therefore, the speckle noise is much stronger. It is very
challenging to perform change detection on this dataset.

The performance evaluation of change detection methods is
critical. In this article, false positives (FP), false negatives (FN),
percentage correct classification (PCC), overall errors (OE), and
Kappa coefficient (KC) are used as the evaluation criteria. The
FP denotes the number of pixels that are unchanged in the
ground-truth image but falsely classified into the changed class
in the change detection result. The FN denotes the number of
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(b)

Fig. 8. Farmland dataset. (a) Image captured in June 2008. (b) Image captured
in June 2009. (c) Ground-truth image.

pixels that are changed in the ground-truth image but falsely
classified into the unchanged class in the change detection result.
Then, the OE can be computed by using OE = FP + FN. The
PCC can be computed by

N, — OF

t

PCC = x 100% @)

where N, represents the total pixels in the ground-truth image.
KC is defined as

PCC — PRE
KC= ———
¢ 1 —PRE ®
pr . (Vo FP— FN) x N, + (I, + FN — FP) x N,
- Nt X Nt

(€))

where V. denotes the number of changed pixels in the ground
truth image, and V,, denotes the number of unchanged pixels
in the ground-truth image. It should be noted that KC is more
persuasive than the PCC, since more detailed information should
be taken into account to obtain good KC values in change
detection.

B. Parameters Analysis of the Proposed DCNet

1) Analysis of the Sample Image Size: In the proposed DC-
Net, the size of the sample image is an important parameter. The
contextual information in classification is sensitive to neighbor-
hood noise. The first experiment tests the parameter r. Here, r
denotes the size of a sample image patch from the input SAR
image. We evaluate the performance of change detection by
takingr = 5,7, 9, 11, 13, and 15, respectively. The PCC value
is investigated as the validation criterion on different datasets.

Fig. 9 shows the sensitivity analysis result of the parameter .
We can observe that when r = 9, the proposed DCNet achieves
the best results on most of the dataset. If we use larger patches,
the sample image may not be representative of the pixel in the
center. In addition, larger patches will increase the computa-
tional burden. Hence, 7 is set to 9 in our following experiments
for sample image generation.

2) Analysis of Training Sample Numbers: The number of
training samples affects the change detection performance, since
a large number of samples is usually essential for deep neural
networks to optimize parameters. In this subsection, we inves-
tigate the relationship between the PCC and training sample
numbers on four SAR datasets.
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Fig. 10. Relationship between PCC and the number of training samples.

As mentioned in Section II, training samples are randomly
selected from €2, and €2,,. We randomly selected 2%, 4%, 6%,
8%, 10%, 12%, 14%, and 16% pixels from €2, and 2,, as train-
ing samples, respectively. Fig. 10 shows the change detection
performance on four datasets when different number of training
samples are employed. From these curves, it can be observed that
there is a sharp increase in the PCC value when the number of
training samples ranges from 2% to 10%. The PCC value tends
to be stable when the training sample number is 10% or larger
on most datasets. Therefore, in our experiments, we select 10%
pixels from €2, and €, as training samples. Such a relatively
small ratio is selected since the hardware resources are often
limited.

3) Analysis of Channel Weighting-Based Residual Block
Numbers: In this article, we are devoted to constructing a deep
neural network for the interpretation of multitemporal SAR
images. From Fig. 1, we can observe that there are three groups
of channel weighting-based residual blocks in the proposed DC-
Net. N,. denotes the number of channel weighting-based residual
blocks in each group. A larger value of NV, means a deeper neural
network. For instance, NV,, = 1 means six convolution layers in
residual blocks for feature extraction, and so on. In this analysis,
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Fig. 11. Relationship between PCC and the residual block numbers N, in
each feature group.

Fig. 12.  Change detection results on the Sulzberger II dataset with different
N, values. (a) N, = 1. (b) Np =2. (¢c) N, = 3. (d) N, = 4.

N, is set to 1, 2, 3, 4. The relationship between PCC and the
number of residual blocks is presented in Fig. 11.

We can observe that the proposed DCNet achieves the best
performance when N, = 4 for the Ottawa, Sulzberger II, and
Farmland datasets. There are many small noisy regions in
the change maps of the Ottawa, Sulzberger II, and Farmland
datasets, the classification model needs strong discriminative
power to detect these regions correctly. It is evident that deeper
networks can increase the discriminative power of the proposed
DCNet. On the Sulzberger I dataset, there are fewer noise
regions in the change map, and the PCC values tend to be stable
when N,. > 2. It means that two residual blocks are enough for
discriminant feature extraction on this dataset. Therefore, in our
implementations, NN, is set to 2 for the Sulzberger I dataset. On
the other datasets, INV,. = 4 is selected.

Visual comparisons of different V,. values on the Sulzberger
IT and Farmland datasets are illustrated in Figs. 12 and 13,
respectively. It can be observed that there are many noisy falsely
detected changed regions in the generated change map when
N, < 3. As the value of N, increases, this phenomenon can
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(d

Fig. 13.  Change detection results on the Farmland dataset with different IV,
values. (a) N, = 1. (b) N, =2. (¢) N, = 3. (d) N, = 4.

(b) (©

Fig. 14. Feature images of the Farmland dataset. (a) Fused feature images
extracted from low level. (b) Fused feature images extracted from midlevel.
(c) Fused feature images extracted from high level.

be alleviated. Careful observation can identify the improvement
when N, increases, such as regions marked by the red circles
in Figs. 12 and 13. Deeper architecture can effectively extract
discriminative features, and therefore, improve the change de-
tection performance.

Furthermore, we fuse the feature images of the Farmland
dataset extracted from different levels, as shown in Fig. 14.
We can observe that information on coarse scale (stripes and
edges) is extracted from low-level and midlevel. However, the
noise is still obvious. In Fig. 14(c), it is clear that meaningful
features can be extracted so that the impact of speckle noise
is alleviated. These features effectively improve the change
detection performance, as shown in Fig. 11. Therefore, we can
conclude that the proposed DCNet has good feature learning
ability in terms of feature visualization and PCC values.

C. Analysis of Different Feature Fusion Strategy

In this subsection, different levels of features are fused to
evaluate the feature fusion strategy. Table II illustrates the PCC
values on four datasets by employing different fusion strategies.
DCNet-H denotes that feature fusion strategy is not employed in
classification, and only high-level features are used. DCNet-LH
represents that the low-level and high-level features are fused
in classification. Correspondingly, DCNet-MH means that the
midlevel and high-level features are fused in classification.
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TABLE II
PCC VALUES BY DIFFERENT FUSION STRATEGIES ON FOUR DATASETS

DCNet-H DCNet-LH DCNet-MH ~ DCNet
Ottawa 98.10 98.11 98.13 98.30
Sulzberger 1 98.72 98.72 98.68 98.80
Sulzberger I1 95.50 95.68 95.22 97.25
Farmland 97.85 97.88 97.96 98.71
0.7
0.6 [ a=0.1
05l a=0.01
" a=0.001
804
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£ |
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Fig. 15.  Relationship between the training loss and the number of epochs with
different learning rate o on the Ottawa Dataset.

It should be noted that the proposed DCNet combines the
low-level, midlevel, and high-level features.

From Table II, we can observe that feature fusion can im-
prove change detection performance. DCN-H exhibits the lowest
PCC values because information embedded in different levels
is not fully exploited. The classification performance can be
improved by fusing the features from lower or middle levels. It
indicates that the complementary information in different levels
of features can be exploited by the simple yet effective fusion
strategy employed in this article. Particularly, the proposed
DCNet achieves the best performance, and we can draw the
conclusion that the fusion strategy used in the proposed DCNet
is indeed effective.

D. Analysis of the Learning Rate

In this subsection, we analyze the effect of learning rate «
on network convergence and the effectiveness of the residual
learning based on the Ottawa dataset. As shown in Fig. 15, we
can observe that « plays a key role in network convergence. As
mentioned, batch normalization is included in the proposed DC-
Net. It allows a relatively high learning rate while accelerating
the convergence of the network. As illustrated in Fig. 15, there
are less fluctuations in the loss when o = 0.001. Therefore, the
proposed DCNet is optimized by o« = 0.001, which provides a
relatively steady convergence.

In Fig. 16, comparison of the training loss between DCNet
with residual learning and DCNet without residual learning
is presented. It can be observed that the DCNet with residual
learning can converge steadily and efficiently. On the contrary,
the DCNet without residual learning exhibits the degradation
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Fig. 16. Relationship between the training loss and number of epochs
with/without residual learning on the Ottawa dataset.

problem and has higher error throughout the training process. It
is demonstrated that the residual learning in the proposed DCNet
can effectively alleviate the degradation problem, and therefore,
improve the change detection performance.

E. Results on the Ottawa Dataset

In order to verify the effectiveness of the proposed DCNet,
we compare our method with several closely related methods,
including PCAKM [46], NR-ELM [20], RMG-FDA [10] Gabor-
PCANet [47], LR-CNN [37], and DBN [28].

In PCAKM [46], the contextual information is taken into ac-
count by principal component analysis (PCA), and the extracted
features are clustered by the k-means algorithm. NR-ELM [20]
utilizes an ELM [48] as the classifier. GaborPCANet [47] is
a simplified deep learning model, which is comprised of two
PCA convolutional layer, binary hashing layer, and block-wise
histogram generation layer. RMG-FDA [10] employs a classifier
based on random multigraphs. LR-CNN [37] is a CNN with local
spatial restrictions on the output layer. In DBN [28], a deep belief
network is employed to complete the SAR change detection task.

Among the comparisons, LR-CNN [37] and DBN [28] at-
tempt to accomplish the change detection task by deep learning.
It should be noted that the LR-CNN [37] takes the polarimetric
information into account. We modified the LR-CNN model to
make it suitable for datasets used in this article. The result of
PCAKM, NR-ELM, RMG-FDA, and GaborPCANet are im-
plemented by using the authors’ publicly available codes and
default parameters.

Both visual and quantitative analyses are made in our exper-
iments. For visual examination, the change maps generated by
different methods are exhibited in figure form. For quantitative
analysis, the change maps are exhibited in tabular form.

Fig. 17 shows the change detection results on the Ottawa
dataset, and Table III lists the evaluation criteria. From Table II1,
we can observe that for PCAKM, RMG-FDA, and LR-CNN,
many changed pixels are missed, and therefore, these meth-
ods suffer from high FN values. In addition, the FP values of
PCAKM, GaborPCANet, NR-ELM, and DBN are relatively
high. Compared with other methods, the proposed DCNet can
provide more similar results to the ground-truth change map.

4525

Fig.17.  Visualized results of different change detection methods on the Ottawa
dataset. (a) Ground-truth image. (b) Result by PCAKM. (c) Result by NR-ELM.
(d) Result by RMG-FDA. (e) Result by GaborPCANet. (f) Result by LR-CNN.
(g) Result by DBN. (h) Result by the proposed DCNet.

TABLE III
CHANGE DETECTION RESULTS ON THE OTTAWA DATASET

Methods FP FN OE PCC(%) KC(%)
PCAKM 955 1515 2470  97.57 90.73
NR-ELM 695 1076 1771  98.26 93.38
RMG-FDA 198 1883 2071  97.95 91.96
GaborPCANet 953 942 1895  98.13 92.99
LR-CNN 63 3747 3810  96.25 84.45
DBN 995 704 1699  98.33 93.76
Proposed DCNet 679 1051 1730  98.30 93.54

On this dataset, the DBN yields the best PCC value of 98.33%.
The proposed DCNet achieves a PCC value of 98.30%, which
is quite competitive to DBN on this dataset. It is evident that
the proposed DCNet can exploit the nonlinear relations from
the multitemporal data by channel weighting-based residual
learning and feature fusion. The comparisons also demonstrate
the effectiveness of the proposed method on the Ottawa dataset.

F. Results on the Sulzberger I Dataset

Fig. 18 illustrates the change detection results on the
Sulzberger 1 dataset. The evaluation metrics are listed in
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Fig. 18.

Visualized results of different change detection methods on the
Sulzberger I dataset. (a) Ground-truth image. (b) Result by PCAKM. (c¢) Result
by NR-ELM. (d) Result by RMG-FDA. (e) Result by GaborPCANet. (f) Result
by LR-CNN. (g) Result by DBN. (h) Result by the proposed DCNet.

TABLE IV
CHANGE DETECTION RESULTS ON THE SULZBERGER I DATASET

Methods FP FN OE PCC(%) KC(%)
PCAKM 711 479 1190  98.18 93.90
NR-ELM 719 832 1551  97.63 91.95
RMG-FDA 626 1094 1720  97.38 90.97
GaborPCANet 895 703 1598  97.56 91.79
LR-CNN 957 119 1076 98.36 94.59
DBN 149 764 913 98.61 95.18
Proposed DCNet 103 681 784 98.80 95.87

Table IV. From the visual comparison, it can be observed that
PCAKM, LR-CNN, and GaborPCANet generate many noisy
regions, and therefore, they suffer from high FP values. For
NR-ELM and RMG-FDA, many changed pixels are missed,
and therefore, the FN values of NR-ELM and RMG-FDA are
relatively high. Moreover, it can be seen that deep learning-based
methods (LR-CNN, DBN, and the proposed DCNet) can achieve
better performance than shallow model methods. Compared
with LR-CNN, the KC value of the proposed DCNet has
increased by 1.28%. Compared with the DBN, the KC value
of the proposed DCNet has increased by 0.69%. This further
demonstrates that feature fusion and channel weight-based
residual learning improves the change detection performance
on the Sulzberger I dataset.

Fig. 19. Visualized results of different change detection methods on the
Sulzberger II dataset. (a) Ground-truth image. (b) Result by PCAKM. (c) Result
by NR-ELM. (d) Result by RMG-FDA. (e) Result by GaborPCANet. (f) Result
by LR-CNN. (g) Result by DBN. (h) Result by the proposed DCNet.

TABLE V
CHANGE DETECTION RESULTS ON THE SULZBERGER II DATASET

Methods FP FN OE PCC(%) KC(%)
PCAKM 2368 203 2571  96.08 90.15
NR-ELM 1490 1415 2905  95.57 88.43
RMG-FDA 456 1794 2250  96.57 90.78
GaborPCANet 1410 1437 2847  95.66 88.63
LR-CNN 1198 680 1878 97.13 92.58
DBN 632 1242 1874 97.14 92.43
Proposed DCNet 506 1183 1689  97.42 93.17

G. Results on the Sulzberger Il Dataset

Fig. 19 presents the change detection results on the Sulzberger
II dataset. The quantitative metrics of different methods are
lists in Table V. The result of PCAKM is polluted with noise
regions. Therefore, PCAKM suffers from a very high FP value.
For NR-ELM, RMG-FDA, and GaborPCANet, many changed
regions are missed, and therefore, the FN values of these methods
are relatively high. It can be seen that deep learning-based
methods (LR-CNN, DBN, and the proposed DCNet) perform
better than classical shallow models. It should be noted that
the proposed DCNet generates the best change map, which is
very similar to the ground truth. Moreover, the proposed DCNet
detects changed regions correctly with a clean background. It is
demonstrated that the proposed DCNet can effectively suppress
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Fig. 20. Visualized results of different change detection methods on the
Farmland dataset. (a) Ground-truth image. (b) Result by PCAKM. (c) Result
by NR-ELM. (d) Result by RMG-FDA. (e) Result by GaborPCANet. (f) Result
by LR-CNN. (g) Result by DBN. (h) Result by the proposed DCNet.

TABLE VI
CHANGE DETECTION RESULTS ON THE FARMLAND DATASET

Methods FP  FN OE PCC(%) KC(%)
PCAKM 5158 155 5273 94.08  63.29
NR-ELM 256 1794 2050 9770 76.05
RMG-FDA 169 1614 1783  98.00  79.37
GaborPCANet | 2942 493 3435  96.14  71.55
LR-CNN 1118 423 1541 9827  85.36
DBN 561 668 1229  98.62  87.49
Proposed DCNet | 493 658 1151 9871 8833

the speckle noise in SAR images. The comparison shows that the
proposed DCNet is powerful in discriminative feature extraction
and is indeed effective on the Sulzberger II dataset.

H. Results on the Farmland Dataset

Fig. 20 illustrates the change detection results by different
methods on the Farmland dataset. The evaluation metrics of
different methods are listed in Table VI. The Farmland dataset
is seriously interfered by different characteristics of speckle
noise. Specifically, the image captured in 2008 is a single-look
image, while the image captured in 2009 is a four-look image.
The speckle noise in the image captured in 2008 is much
greater than the image captured in 2009. Therefore, it is rather
challenging to identify changed regions accurately. PCAKM
and GaborPCANet do not perform well, and the FP values of
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both methods are rather high. We can observe that there are
many noisy regions in their change maps. For RMG-FDA, many
changed regions are missed, and the FN value of RMG-FDA is
relatively high. The LR-CNN, DBN, and the proposed DCNet
have better performance by employing deep models in feature
extraction. The proposed DCNet exhibits the best performance,
since channel-weighting-based residual learning and multilevel
feature fusion are applied.

Based on the aforementioned experiments on the four real
SAR datasets, the proposed DCNet has superior performance
over shallow classification models. In addition, by employing
channel weighting-based residual learning, the proposed DCNet
has better performance than other deep learning-based methods
in most cases. Moreover, the feature fusion strategy in the pro-
posed DCNet exploits the complementary information among
different feature layers, which further improves the change de-
tection performance. Therefore, itis concluded that the proposed
DCNet is a powerful and useful tool for the multitemporal SAR
image change detection.

IV. CONCLUSION

Deep learning-based models have been recently discussed to
solve the problem of SAR image change detection. Deep feature
extraction has presented promising performance. However, with
the increase of network depth, the exploding gradient problem
often occurs. Besides, deep networks tend to produce a lot
of redundant features that are very similar. These redundant
features also affect change detection performance.

In this article, a deep learning-based method, DCNet, is
proposed to solve the aforementioned problems. In the DCNet,
residual learning introduced to solve the exploding gradient
problem. Besides, a fusion mechanism is employed to combine
the outputs of different hierarchical layers, and then, the ex-
ploding gradients problem can be further alleviated. Moreover, a
simple yet effective channel weighting-based model is designed
to solve the feature redundancy problem. Average pooling and
max pooling are used to aggregate channel-wise information.
After that, meaningful channel features are emphasized and
unnecessary ones are suppressed. Therefore, the similarity prob-
lem in feature maps can be alleviated, and the change detection
performance is improved. Compared with other closely related
works, the proposed DCNet has presented a superior perfor-
mance in terms of visual comparison and quantitative metrics.
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