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Abstract: Hyperspectral image classification has been acknowledged as the fundamental and
challenging task of hyperspectral data processing. The abundance of spectral and spatial information
has provided great opportunities to effectively characterize and identify ground materials. In this
paper, we propose a spectral and spatial classification framework for hyperspectral images based on
Random Multi-Graphs (RMGs). The RMG is a graph-based ensemble learning method, which is rarely
considered in hyperspectral image classification. It is empirically verified that the semi-supervised RMG
deals well with small sample setting problems. This kind of problem is very common in hyperspectral
image applications. In the proposed method, spatial features are extracted based on linear prediction
error analysis and local binary patterns; spatial features and spectral features are then stacked into
high dimensional vectors. The high dimensional vectors are fed into the RMG for classification.
By randomly selecting a subset of features to create a graph, the proposed method can achieve excellent
classification performance. The experiments on three real hyperspectral datasets have demonstrated
that the proposed method exhibits better performance than several closely related methods.

Keywords: random multi-graphs; local binary patterns; hyperspectral image; pattern classification

1. Introduction

With the advance of earth observation programs, many hyperspectral sensors with high spectral
resolution have been developed, such as NASA’s Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), and NASA’s EO-1 with its hyperspectral instrument Hyperion. The AVIRIS can acquire
image data in 224 bands of 10 nm spectral resolution in the reflected visible and near infrared spectrum.
The Hyperion can acquire image data in 242 spectral bands at approximately 10 nm spectral resolution.
In China, hyperspectral sensors include FY-3A with the Medium-Resolution Spectral Imager (MERSI),
Chang’E-1 with the Interferometric Imaging Spectrometer (IIS), and the upcoming GaoFen-5 with the
Advanced Hyperspectral Imager (AHSI). More and more remote sensing hyperspectral images are
available. Hyperspectral images can obtain hundreds of narrowband spectral channels for the same
area, and can provide richer spectral information to support the fine recognition of various land-cover
materials. Therefore, hyperspectral images have drawn increasing attention and opened up new remote
sensing application fields, such as hydrocarbon detection [1], lake sediment analysis [2], oil reservoir
exploration [3], and diseased wheat detection [4], etc. Among these applications, classification of
hyperspectral images is well acknowledged as the fundamental and challenging task of hyperspectral

Remote Sens. 2018, 10, 1271; doi:10.3390/rs10081271 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-1825-328X
http://www.mdpi.com/2072-4292/10/8/1271?type=check_update&version=1
http://dx.doi.org/10.3390/rs10081271
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1271 2 of 20

data processing. Therefore, hyperspectral image classification has been widely studied in the last two
decades [5].

Given a set of observations with known class labels, the basic goal of hyperspectral image
classification is to assign a class label to each pixel [6]. Then, the material properties of each pixel
can be well described. However, hyperspectral images pose strong classification challenges, such
as the well-known Hughes phenomenon. The Hughes phenomenon [7] means that an increase in
dimensions of limited training samples will cause a decrease in classification performance [8]. To
solve the problem, feature extraction is considered as a critical step in hyperspectral image processing.
However, due to the spatial variability of spectral signatures, hyperspectral image feature extraction is
widely acknowledged as one of the most challenging tasks in hyperspectral image processing [9,10].

Many existing methods used a series of manually extracted features [11–16], which involve
massive parameter setting and experts’ experience. Gabor wavelet filters [6], adaptive filters [12],
and Markov random fields [14] are often adopted. In recent years, deep learning methods,
which contain two or more hidden layers, tend to extract the discriminant and invariant features
of the input data. These deep learning methods have attracted great interests in remote sensing
communities [17–30]. Recently, some researchers consider that many deep learning methods work in
similar ways to ensemble learning methods. For instance, the multi-layer feedforward neural network
can be viewed as an ensemble of neural networks in which there is only one single hidden layer with
multiple neurons.

Ensemble learning methods have caused widespread interests in remote sensing
communities [31–37]. They is considered to have great potential for hyperspectral image classification.
By making use of a set of “locally specialized” classifiers, ensemble learning methods can effectively
describe the characteristics of data. Some ensemble learning methods based on support vector
machines [33,34] and boosting [35,36] have achieved good classification performance on hyperspectral
images. However, graph-based ensemble learning methods have rarely been considered in the task of
hyperspectral image classification. In our previous work, we proposed Random Multi-Graphs (RMG) [38],
which are a graph-based ensemble method. In RMG, the classifier consists of an arbitrary number of trees.
These trees are constructed systematically by randomly selecting subsets of features. In other words,
trees are constructed in randomly chosen subspaces. Inspired by such randomness, the performance of
hyperspectral image classification can be improved to mitigate the well-known Hughes phenomenon.

In this paper, we use randomness injection to solve the problem of hyperspectral image
classification, and propose a new framework based on spectral–spatial feature stacking and Random
Multi-Graphs (SS-RMG for short). The key ideas of the proposed SS-RMG contain the following two
aspects: First, inspired by Li’s work [39], spatial features are extracted based on linear prediction
error [40] and local binary patterns [41]. Then, spatial features and spectral features are stacked into
high dimensional vectors. Second, the high dimensional vectors are fed into the RMG for classification.
By randomly selecting a subset of features to create a graph, the proposed method can achieve
satisfying classification performance.

The main contributions of this paper can be summarized as follows: (1) We introduce the RMG
algorithm into hyperspectral image classification for the first time. RMG is a graph-based ensemble
learning method, which is rarely considered in hyperspectral image classification. RMG is comprised
of many graph-based classifiers. It is empirically verified that the semi-supervised RMG deals well
with small sample setting problems, i.e., problems where the number of labeled examples is limited.
Such kinds of problems are very common to remote sensing applications. (2) Besides two widely
used hyperspectral image datasets, we use one Arctic sea ice dataset to evaluate the performance
of the proposed method. Previous studies mainly focus on ground cover classification, and the sea
ice dataset is rarely used. In the Arctic, sea ice can be an obstacle to normal shipping routes. Sea ice
classification from hyperspectral imagery is very important for the prediction and warning of sea ice
disasters. In this paper, a part of the sea ice located between the Baffin Island and the southwest coast
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of Greenland is investigated. The proposed method obtains good classification performance in Arctic
sea ice classification, and it may contribute to the Polar research communities.

The remainder of this paper is organized as follows. Section 2 reviews the related work focusing
on hyperspectral classification. In Section 3, we present the proposed classification framework based
on spectral–spatial features. Section 4 shows the experimental results on three real hyperspectral
images. These experiments demonstrate the effectiveness of the proposed method. Finally, Section 5
gives the concluding remarks, together with some hints for plausible future research.

2. Related Work

Researchers have studied hyperspectral image classification for decades. This section discusses
the existing feature extraction methods for hyperspectral image classification. We first review
spatial–spectral classification methods based on handcrafted features, then we review classification
methods based on deep learning and ensemble learning models, respectively.

Spatial-spectral classification methods based on handcrafted features. Inspired by the
phenomenon where spatially neighboring pixels carry correlated information, jointly exploiting both
spatial and spectral information becomes an attractive field of hyperspectral image classification [11].
Most of the previously proposed spatial–spectral classification methods have focused on using
handcrafted features, which are designed based on the experts’ prior knowledge, such as principle
component analysis, Gabor wavelet filters, and morphological profiles. One simple yet effective
method for spatial–spectral classification is by applying adaptive filters or moving windows to the
spectral bands. Benediktsson et al. [12] proposed a classification method based on an extended
morphological profile. The extended morphological profile is performed at many scales, and the
obtained features are then fed into a classifier for classification. Jia et al. [6] used Gabor wavelet
filters with different scales on hyperspectral data to extract spectral–spatial-combined features.
In addition, some statistical tools are used to model the spatial relationship between neighboring
pixels. Li et al. [13] utilized multi-modal logistic regression and Markov random fields to model the
contextual information among neighboring pixels. Tarabalka et al. [14] utilized Markov random fields
to refine the classification result generated by probabilistic support vector machines. Wang et al. [15]
proposed a locality adaptive discriminant analysis method, and applied the method to spatial–spectral
classification of hyperspectral images. Makantasis et al. [16] presented a tensor based method for
hyperspectral image classification. The method retains the spatial and spectral coherency of the input
samples by utilizing tensor algebra operations. It is empirically verified that when the size of the
training set is small, the tensor based method presents superior classification performance.

Classification methods based on a deep learning model. Deep learning methods, which contain
two or more hidden layers, tend to extract the discriminant and invariant features of the input
data. These methods have been actively studied in image classification [42,43], natural language
processing [44], and speech recognition [45], etc. Recently, deep learning methods have attracted
great interest in remote sensing communities [17–30]. Detailed surveys of deep learning methods for
processing of remote sensing data can be found in [46–48]. Chen et al. [17] introduce deep learning
to hyperspectral image classification for the first time. A deep model based on stacked autoencoders
was designed for feature extraction, and the model obtained better classification accuracy compared
with some shallow classification models. Later, Chen et al. [18] propose a classification strategy
based on deep belief networks (DBN). The multilayer DBN model is designed to learn the deep
features of hyperspectral data, and the learned features are then classified by logistic regression.
Ding et al. [21] propose a hyperspectral image classification method based on convolutional neural
networks (CNNs), where the convolutional kernels can be automatically learned from the data through
clustering. Wu et al. [22] propose a convolutional recurrent neural network (CRNN) for classification
of hyperspectral data. The convolutional layers are utilized to extract locally invariant features, which
are then fed to a few recurrent layers to additionally extract the contextual information among different
spectral bands. Li et al. [23] propose a CNN-based pixel-pairs feature extraction framework for
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hyperspectral image classification. A pixel-pair model is designed to exploit the similarity between
pixels and ensure a sufficient amount of data for the CNN. Pan et al. [26] design a Vertet Component
Analysis Network (VCANet) for deep features extraction from hyperspectral images smoothed by a
rolling guided filter. Zhang et al. [29] propose a diverse region-based CNN for hyperspectral image
classification which can encode semantic context-aware representations to obtain promising features.

Classification methods based on an ensemble learning model. Ensemble learning models use
multiple learning algorithms to obtain better predictive performance than could be obtained from any
of the constituent learning algorithms alone. Ceamanos et al. [33] propose a hyperspectral classification
method based on the fusion of multiple SVM classifiers. The method relies on the decision fusion of
individual SVM classifiers which are trained in different feature subspaces. Huang et al. [34] present a
multifeature classification model, aiming to construct a SVM ensemble combining multiple spectral
and spatial features. Gu et al. [35] propose a multiple kernel learning framework which employs a
boosting strategy for screening the limited training samples. The multiple kernel learning framework
exploits the boosting trick to try different combinations of the limited training samples and adaptively
determine the optimal weights of base kernels. Qi et al. [36] propose a multiple kernel learning method
which can leverage the feature selection and particle swarm optimizations.

Our work is related to the ensemble learning model. A graph-based ensemble learning model
has rarely been considered in hyperspectral image classification. In particular, our method introduces
RMG into hyperspectral classification. RMG is a graph-based ensemble method, in which the classifier
consists of an arbitrary number of trees for classification. We also show that the utilization of RMG can
alleviate the phenomenon of over fitting and can effectively obtain satisfactory classification results.

3. Methodology

The framework of the proposed SS-RMG method is illustrated in Figure 1. It consists of two
main steps: (1) Extraction of the spatial and spectral features; (2) integrating the spatial and spectral
information into the random multi-graphs for classification. In the remainder of this section, we will
describe in more details the strategies adopted for feature extraction and spatial-spectral classification.

Original data Spectrum vector

LPE for band 
selection

Neighborhood 

region

LBP feature 
extraction

Spatial vector . . .

Spatial-spectral 

stacked vector

Random 
Multi-
Graphs

Output 

class

labels

Figure 1. Flow chart of the proposed SS-RMG method.

3.1. Spectral and Spatial Feature Extraction

The feature extraction step includes two parallel modules: Spectral feature extraction and spatial
feature extraction. The spectral and spatial features of each pixel are stacked into a one-dimensional
vector. The feature vectors are then fed into random multi-graphs for classification. Here, we introduce
how spectral and spatial features are extracted. Then, we will give brief descriptions of how spectral
and spatial features are combined in the proposed framework.

In spectral feature extraction, we use the raw data of all the spectral bands as input. In spatial
feature extraction, linear prediction error (LPE) [40] is first utilized to select a subset of spectral bands
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with distinctive and informative features. LPE is a simple yet effective band selection method, based
on band similarity measurement. Assuming that there are two initial bands B1 and B2, for every
other band B, an approximation can be expressed as B′ = a0 + a1B1 + a2B2. Here, a0, a1 and a2

are the parameters to minimize the LPE: e = ‖B− B′‖2. The parameter vector can be denoted by
a = [a0, a1, a2]

T . A least square solution can be employed to obtain the parameter vector as follows:

a = (MT M)−1MTm, (1)

where M is a matrix with three columns whose first column is with all ones, second column is the
B1-band, and third column is the B2-band. The number of rows of M is the total number of pixels
in each spectral band. m is the B-spectral band. The band that produces the maximum error e is
considered as the most dissimilar band to B1 and B2, and will be selected. Thus, the band combination
can be subsequently augmented to five, six, seven, and so on, until the desired number of bands
are obtained.

After band selection, the local binary pattern (LBP) [41] feature extraction process is applied to
each selected band. LBP is a non-parametric method, and it summarizes local structures of images
efficiently by comparing each pixel with its neighboring pixels. The most important properties of
LBP are its tolerance regarding monotonic illumination changes and its computational simplicity.
Given a center pixel tc, each neighbor of a local region is assigned a binary label, which is either “0”
or “1” depending on whether the center pixel has a larger intensity value or not. Specifically, the k
neighboring pixels are generated from a circle of radius r centered at tc. Along with the selected k
neighbors, the LBP code for the center pixel tc can be given by:

LBPk,r(tc) =
k−1

∑
i=0

U(ti − tc)2i, (2)

where U(ti − tc) = 1 if ti > tc, and U(ti − tc) = 0 if ti ≤ tc. The output of LBP code reflects the
texture orientation and smoothness in a local region of the size w× w. After obtaining the LBP code
of all pixels, an occurrence histogram is computed over a local patch centered at the pixel of interest,
as shown in Figure 2. Then, all bands of LBP histograms are concatenated to form the spatial feature
vector. It is well worth noting that the patch size w is a user-defined parameter, and classification
performance with different patch sizes will be examined in the experimental section.

It should be noted that in this paper we use an extension of the original LBP, which is called the
uniform pattern. The uniform pattern can effectively reduce the feature vector and implement a simple
rotation invariant operator. A LBP is called uniform if the binary pattern contains at most two 0–1 or
1–0 transitions. In the computation of LBP histograms of each spectral band, all non-uniform patterns
are assigned to a single bin. Then, the feature vector for one spectral band reduces from 256 to 59.

Single band 

image

LBP feature 
extraction

Interested pixel 

center

LBP image

LBP image

patch

LBP 

histogram

Figure 2. Implementation of LBP feature extraction.
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The spectral features contain important information for discriminating different kinds of ground
categories. The spatial features decrease the intra-class variance and can lead to improved classification
performance. The combination of spectral and spatial features provides more reliable classification
results. The integration of spectral and spatial features is addressed by using a vector stacking
approach, as shown in Figure 1. Specifically, for each pixel, the spatial feature vector is added to the
end of the spectral vector. Then, these features are fed into the Random Multi-Graphs for classification.
The detailed classification model will be described in the following subsection.

3.2. Classification Based on Random Multi-Graphs

The combined spectral and spatial features are fed into the Random Multi-Graphs for classification.
The Random Multi-Graph (RMG) [38] is originally designed to solve the problem of face recognition.
It tries to achieve two goals: The first is to avoid the curse of dimensionality and over fitting by
injecting randomness into the graph. The second is to provide a new learning framework to handle
high dimensionality and large-scale-data problems.

Given a dataset comprised of labeled data Xlab = [x1, x2, . . . , xl ] and unlabeled data Xunlab =

[xl+1, xl+2, . . . , xl+u], we can obtain a weighted graph. In the graph, the vertices consist of N = l + u
data points. The edges in the graph with weights represent the similarity between the affiliated nodes,
and these edges can be represented by a weight matrix W ∈ RN×N . Once the graph is built, the label
information is injected into the graph and propagated throughout the whole graph to obtain the labels
for the unlabeled data. Specifically, if the weight wij is large, then the labels of the adjacent vertices xi
and xj are considered to have the same label.

For a c-class classification problem, the graph-based learning methods can be considered as the
following quadratic optimization problem:

min
f

tr(f− Y)TC(f− Y) + tr(fTLf), (3)

where tr(·) is the trace function. C ∈ RN×N is a diagonal matrix, and its i-th diagonal element ci is
computed as ci = Cl > 0 for 1 ≤ i ≤ l, and ci = Cu > 0 for l + 1 < i ≤ N, where Cl and Cu are two
parameters. Y = (y1, . . . , yl , 0, . . . , 0)T ∈ RN×c. f ∈ RN×c denotes the predicted labels. L ∈ RN×N is
the regularization matrix. L is the graph Laplacian, and it is defined as L = D−W, where W is the
weight matrix of the graph and computed by the Gaussian kernel as:

wij = e−
‖xi−xj‖

2

2σ2 , (4)

where σ is the kernel width parameter, which needs to be tuned. D is the row sum of W. More detailed
information can be found in Zhang’s work [38].

In order to automatically discover the neighborhood structure inherent in the graphs to learn
appropriate compact representations, researchers proposed the Anchor Graphs algorithm in handwritten
digit recognition [49] and image classification [50]. The Anchor Graph algorithm allows constant time
hashing of a new data point by extrapolating graph Laplacian eigenvectors to eigenfunctions. Then,
a hierarchical threshold learning procedure is applied in which each eigenfunction yields multiple bits,
leading to higher search accuracy. In the Anchor Graphs algorithm, the label prediction function can be
represented as:

f (xi) =
j=1

∑
m

Pij f (aj), (5)

where Pij is the data-adaptive weight. A = {aj}m
j=1 in which each aj is an anchor point. This formula

reduces the solution space of unknown labels from the larger space to a smaller space. K-means
clustering centers are selected as anchors, since these centers have strong representation power to
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cover the full dataset. Liu et al. [49,51] proposed the Local Anchor Embedding (LAE) algorithm to
obtain the anchors. In this paper, we use the LAE algorithm to compute the anchor points.

Figure 3 illustrates the flowchart of the RMG algorithm. The whole framework of RMG can be
described as follows:

• Step 1: Randomly select k f features from all the high dimensional features of each sample.
• Step 2: Select m anchor points to cover the data manifold denoted by an anchors matrix, and then

compute the mapping matrix P to represent the rest of the data points via the selected anchors.
• Step 3: Run semi-supervised inference on this graph by using graph Laplacian Regularization.
• Step 4: Repeat the above steps to get kg graphs.
• Step 5: kg graphs are voted to obtain the labels for the unlabeled data points.

. . .

Input dataset Randomly choose kf features 
to construct graph 1

Randomly choose kf features 
to construct graph 2

Randomly choose kf features 
to construct graph 3

Randomly choose kf features 
to construct graph kg

. . .

Graph-based inference to 
get label prediction F1

Graph-based inference to 
get label prediction F2

Graph-based inference to 
get label prediction F3

Graph-based inference to 
get label prediction Fkg

Voting

. . .

0
1
1
1
1
0
0
1
0

1
0
1

1
0
0

. . .

Predicted 

results

Figure 3. Flow chart of the Random Multi-Graphs algorithm.

The critical part of the proposed SS-RMG is injecting randomness into the graphs. This strategy
can help to alleviate the problem of overfitting. That is, the learning model can fit the training
set very well, but fails to generalize to new samples. The most common solution to overfitting
is regularization. By using regularization, all the features are maintained and the magnitudes of
the parameters are reduced. In this sense, the proposed SS-RMG can be considered as a kind of
regularization. Specifically, we select a small subset of features to construct a graph, and unselected
features’ weights are penalized to become zero in the graph. This kind of regularization can contribute
a lot to alleviate the phenomenon of overfitting. There are some similar statements from previous
work by other researchers. In Reference [52], it is confirmed that the randomness in the classification
model can be viewed as a kind of regularization. In Reference [53], Breiman noted that injecting the
right kind of randomness can help to alleviate overfitting.

The proposed method is suitable for scenarios where a small number of ground truth samples
are selected, and based on these samples, the whole scene will be labeled. In such semi-supervised
applications, RMGs can lead good classification performance.

4. Experimental Results and Analysis

In order to evaluate the performance of the proposed method, three hyperspectral datasets are
employed. As mentioned before, besides two widely used hyperspectral datasets, we use the Baffin
Bay dataset to evaluate the performance of the proposed method. In this section, we first give a brief
introduction to the datasets. Then, the influence of parameters is analyzed. Finally, the experimental
results are shown and discussed by comparing with some closely related methods.

4.1. Dataset Description

The first dataset is the Indian Pines dataset. This dataset is widely used in hyperspectral
classification, and it is captured by the visible/infrared imaging spectrometer (AVIRIS) in Northwestern
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Indiana. It covers the wavelength ranges from 0.4 to 2.5 µm with 20 m spatial resolution. The size of the
dataset is 145× 145 pixels, and 10,249 pixels are labeled. The labeled pixels are classified into 16 classes.
There are 200 bands available after removing the water absorption channels. A false composite image
(R-G-B = band 36-17-11) and the corresponding ground truth are shown in Figure 4a,b. The number of
training and testing samples is summarized in Table 1.

(a) (b)

Alfalfa

Corn-min

Grass/pasture

Grass-pasture-mowed

Hay-windrowed

Oats

Soybeans-min

Wood

Building-grass-trees-drives

Stone-steel-tower

Corn-notill

Corn

Grass-trees

Soybeans-notill

Soybeans-clean

Wheat

Figure 4. Indian Pines dataset and corresponding ground truth. (a) False color composite image
(R-G-B = band 50-27-17); (b) The ground truth image with 16 land-cover classes.

Table 1. Train–test distribution of samples for the Indian Pines dataset.

# Class Train Test

1 Alfalfa 5 41
2 Corn-notill 143 1285
3 Corn-mintill 83 747
4 Corn 24 213
5 Grass-pasture 48 435
6 Grass-trees 73 657
7 Grass-pasture-mowed 3 25
8 Hay-windrowed 48 430
9 Oats 2 18

10 Soybean-notill 97 975
11 Soybean-mintill 246 2209
12 Soybean-clean 59 534
13 Wheat 21 184
14 Woods 127 1138
15 Building-grass-trees-drives 39 347
16 Stone-steel-towers 9 84

Total 1027 9322

The second dataset is called the Pavia University dataset. It is an urban site over the University of
Pavia, Italy. The dataset was captured by the reflective optics system imaging spectrometer (ROSIS-3).
The size of the image is 610 × 340 with 1.3 m spatial resolution. The image has 103 spectral bands
prior to water-band removal. It has a spectral coverage of 0.43–0.86 µm. A false composite image
(R-G-B = band 10-27-46) and the corresponding ground truth are shown in Figure 5a,b. The number
of training and testing samples is summarized in Table 2.

The third dataset is the Baffin Bay dataset. It was acquired on 12 April in 2014, from the Hyperion
sensor of EO-1. The Hyperion sensor collects 220 spectral bands ranging from 0.4 to 2.5 µm. The sensor
operates in a push broom fashion, with a spatial resolution of 30 m for all bands. There are mainly four
classes from the ground truth map: Land, sea water, gray ice and white ice. A false composite image
and the corresponding ground truth are shown in Figure 6a,b. The number of training and testing
samples is listed in Table 3. It should be noted that this dataset is very challenging for hyperspectral
image classification. There are many small pieces of white ice in the dataset, and it is very hard to
classify these white ice pieces correctly.
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(a) (b)

Asphalt

Meadow

Gravel

Trees

Meatal sheets

Bare soil

Bitumen

Bricks

Shadow

Figure 5. Pavia University dataset and corresponding ground truth. (a) False color composite image
(R-G-B = band 10-27-46); (b) The ground truth image with 9 land-cover classes.

Table 2. Train–test distribution of samples for the Pavia University dataset.

# Class Train Test

1 Asphalt 66 6565
2 Meadows 186 18,463
3 Gravel 21 2078
4 Trees 31 3033
5 Painted metal sheets 13 1332
6 Bare Soil 50 4979
7 Bitumen 13 1317
8 Self-blocking bricks 37 3645
9 Shadows 9 938

Total 426 42,350

(a) (b)

Land

White ice

Gray ice

Sea water

Figure 6. Baffin Bay dataset and corresponding ground truth. (a) False color composite image; (b) The
ground truth image with 4 classes.
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Table 3. Train-test distribution of samples for the Baffin Bay dataset.

# Class Train Test

1 White ice 75 7429
2 Gray ice 137 13,541
3 Sea ice 527 52,163
4 Land 114 11,281

Total 853 84,414

4.2. Analysis of Parameters

In the Random Multi-Graphs algorithm [38], the authors have provided a detailed analysis of
Cl and Cu. They have demonstrated that the influence of Cl and Cu is limited. In Zhang’s work [38],
Cl is set as 0.1, and Cu is set to a fixed small value, 10−6. We use the same Cl and Cu values in the
proposed SS-RMG. Here, we mainly focus on the discussion about the particular parameters used in
the proposed SS-RMG: The number of graphs, the number of spectral bands, and the patch size in
LBP feature extraction. In this subsection, OA is selected as the metric. All the results are obtained by
averaging the accuracy results of 30 runs.

In the proposed SS-RMG, the number of graphs kg is an important parameter. We present the
experiments about the effect of kg. Figure 7 illustrates the influence of graph numbers kg on three
datasets. We can see that there is an increase when kg ≤ 20 . When kg is above 20, the OA values
on three datasets tend to be stable. Although utilizing more graphs may contribute to a better result,
the improvement is slight. Therefore, we may draw the conclusion that kg = 20 is an available setting,
since continuously increasing the number of graphs contributes little to the improvement of accuracy.

0 5 10 15 20 25 30 35
96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Number of graphs

O
A

(%
)

 

 

Indian Pines

Pavia University

Baffin Bay

Figure 7. Influence of graph numbers.

The number of bands used in the proposed SS-RMG also affects the final classification results.
Here, we set the number of bands from 1 to 12 to analyze the influence on the three datasets,
as illustrated in Figure 8. It can be observed that after an increase from 1 to 7, the value of OA
on the Indian Pines dataset presents a steady tendency. However, on the Pavia University dataset, there
is a sharp decline when the number of bands is above 5. Similarly, on the Baffin Bay dataset, there
is a slow decline when the number of bands is above 6. In our implementations, we set the number
of bands as 5. Using 5 spectral bands in the proposed SS-RMG may not be the best choice for all
the experimental datasets. Here, we choose a relatively small number, within allowable hardware
resources, for better analysis. On the Indian Pines dataset, the spatial and spectral feature vector
dimension is 495. 295 elements correspond to spatial features and 200 elements correspond to spectral
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features. On the Pavia University dataset, the spatial and spectral feature vector dimension is 398. 295
elements correspond to spatial features and 103 elements correspond to spectral features. On the Baffin
Bay dataset, the spatial and spectral feature vector dimension is 515. 295 elements correspond to spatial
features and 220 elements correspond to spectral features.

0 1 2 3 4 5 6 7 8 9 10 11 12
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Indian Pines

Pavia University
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Figure 8. Influence of spectral band numbers.

Besides the number of graphs and the number of spectral bands, the patch size w in LBP feature
extraction is also an important parameter. We set w to 7, 11, 15, 19, 23, 27, 31, 35, 39 and 43 to
analyze the influence on the three datasets, as illustrated in Figure 9. We notice that there is a sharp
increase in classification accuracy when w ranges from 7 to 19. The accuracy tends to be stable when
w is 19 or larger on the Indian Pines dataset. On the Pavia University and Baffin Bay datasets, the
classification accuracies decline slightly when w ranges from 19 to 43. A larger patch size would take
pixels of different classes into account, and therefore have negative effects in classification accuracy.
If the patch size is too small, the extracted features may not be representative for the center pixel’s
spatial characteristics. Hence, in our experiments, we set the patch size in LBP feature extraction to
19 × 19 pixels.
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Figure 9. Classification performance versus different patch sizes.
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4.3. Classification Results

The performance of the proposed SS-RMG is shown in Tables 4–6 for the three datasets with
different methods. We compare the proposed method with some closely related hyperspectral
classification methods: EPF-G [54], IFRF [55], LBP-ELM [39], and R-VCANet [26]. EPF-G generates
pixel-wise classification maps, and handles these maps by edge-preserving filtering. Then, the class
of each pixel is selected based on the maximum probability. IFRF combines spatial and spectral
information via image fusion and recursive filtering. IFRF does not directly extract patches’ features,
and it uses two parameters δs and δr = 0.3 to extract spatial features. In LBP-ELM, LBP is implemented
to represent the spectral and texture features, and a soft-decision fusion process of extreme learning
machines was used to merge the probability outputs of spectral and texture features. R-VCANet is a
simplified deep learning model. It is comprised of the input layer, two convolutional layers, and the
output layer. In the input layer, a rolling guidance filter is used to explore the contextual structure
features and remove small details.

Table 4. Classification accuracies of different methods on Indian Pines dataset.

Class EPF-G IFRF R-VCANet LBP-ELM SS-RMG

Alfalfa 95.85 ± 11.2 96.00 ± 2.63 98.97 ± 1.65 98.53 ± 3.45 99.64 ± 0.91
Corn-notill 93.95 ± 3.08 95.29 ± 2.13 95.34 ± 1.68 97.03 ± 1.08 99.48 ± 0.56

Corn-mintill 96.25 ± 2.95 96.03 ± 2.64 96.17 ± 1.52 96.56 ± 1.99 99.93 ± 0.12
Corn 67.00 ± 9.15 94.82 ± 3.75 97.38 ± 2.87 96.89 ± 4.08 98.41 ± 1.24

Grass-pasture 98.17 ± 1.25 97.77 ± 2.90 97.80 ± 1.65 98.33 ± 2.34 99.32 ± 0.80
Grass-trees 97.97 ± 1.12 98.78 ± 0.58 99.83 ± 0.17 98.07 ± 0.83 99.73 ± 0.26

Grass-pasture-mowed 100.0 ± 0.00 96.18 ± 12.2 96.00 ± 5.35 93.64 ± 5.17 93.10 ± 4.40
Hay-windrowed 99.99 ± 0.04 100.0 ± 0.00 99.98 ± 0.05 99.50 ± 0.91 99.40 ± 0.52

Oats 99.14 ± 3.41 90.52 ± 13.5 96.29 ± 6.41 92.80 ± 11.1 99.05 ± 2.38
Soybean-notill 80.85 ± 4.36 94.97 ± 1.85 96.13 ± 1.49 97.27 ± 0.61 98.91 ± 0.46

Soybean-mintill 95.32 ± 2.08 98.11 ± 1.27 98.71 ± 0.76 98.91 ± 0.41 99.53 ± 0.56
Soybean-clean 87.23 ± 6.66 96.79 ± 2.02 96.90 ± 1.74 98.31 ± 1.64 99.41 ± 0.65

Wheat 100.0 ± 0.00 96.90 ± 2.42 99.58 ± 0.42 99.01 ± 1.83 100.0 ± 0.00
Woods 99.25 ± 0.92 99.90 ± 0.32 99.83 ± 0.14 99.40 ± 0.72 99.97 ± 0.04

Building-grass-trees-drives 78.80 ± 6.70 94.90 ± 3.27 98.58 ± 1.20 99.52 ± 0.65 100.0 ± 0.00
Stone-steel-towers 87.36 ± 5.49 95.82 ± 5.74 99.08 ± 1.11 92.53 ± 9.34 98.53 ± 1.03

OA (%) 92.43 ± 1.18 97.21 ± 0.44 97.90 ± 0.32 98.15 ± 0.33 99.44 ± 0.28
K × 100 91.33 ± 1.35 96.78 ± 0.51 97.60 ± 0.37 97.89 ± 0.38 99.36 ± 0.32

Table 5. Classification accuracies of different methods on Pavia University dataset.

Class EPF-G IFRF R-VCANet LBP-ELM SS-RMG

Asphalt 97.35 ± 1.94 91.47 ± 3.27 94.73 ± 1.78 88.15 ± 1.54 96.18 ± 0.74
Meadows 98.54 ± 0.77 98.98 ± 0.45 99.71 ± 0.19 96.08 ± 2.72 98.94 ± 0.59

Gravel 93.19 ± 6.24 87.18 ± 4.81 89.33 ± 5.25 93.43 ± 4.04 99.14 ± 0.51
Trees 87.48 ± 10.1 88.81 ± 8.17 90.38 ± 3.04 76.43 ± 11.2 95.46 ± 3.95

Painted metal sheets 96.77 ± 3.27 99.73 ± 0.43 99.89 ± 0.15 88.69 ± 3.17 99.84 ± 0.04
Bare soil 83.85 ± 8.33 94.68 ± 4.09 96.81 ± 2.21 97.85 ± 1.80 99.73 ± 0.16
Bitumen 88.23 ± 9.07 90.19 ± 3.67 93.68 ± 3.41 95.37 ± 3.20 97.05 ± 1.91

Self-blocking bricks 91.01 ± 3.53 85.19 ± 4.82 95.09 ± 1.79 89.88 ± 3.53 96.70 ± 0.72
Shadows 99.06 ± 0.86 77.24 ± 10.5 97.06 ± 2.47 69.29 ± 10.9 99.39 ± 0.27

OA (%) 93.86 ± 1.76 93.73 ± 1.46 96.77 ± 0.91 92.30 ± 1.05 98.14 ± 0.21
K × 100 91.86 ± 2.25 91.74 ± 1.89 95.71 ± 1.21 89.73 ± 1.47 97.54 ± 0.28
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Table 6. Classification accuracies of different methods on Baffin Bay dataset.

Class EPF-G IFRF R-VCANet LBP-ELM SS-RMG

White ice 76.00 ± 4.35 75.05 ± 7.75 85.99 ± 1.13 88.38 ± 2.67 85.82 ± 1.22
Gray ice 75.86 ± 2.97 72.76 ± 5.20 86.85 ± 0.78 79.35 ± 0.52 82.81 ± 1.90

Sea water 98.26 ± 0.23 98.24 ± 0.68 95.14 ± 0.51 94.27 ± 1.65 97.24 ± 0.52
Land 99.38 ± 0.52 98.00 ± 1.65 92.87 ± 1.74 99.16 ± 0.29 99.43 ± 0.41

OA (%) 91.94 ± 0.51 90.84 ± 1.15 92.67 ± 0.34 91.90 ± 0.88 94.17 ± 0.22
K × 100 87.01 ± 1.19 84.48 ± 1.78 88.09 ± 1.21 85.49 ± 1.74 90.61 ± 1.11

We run the above methods 30 times with randomly selected training and testing samples, and the
average accuracies and the corresponding standard deviations are reported. Overall accuracy (OA)
and kappa coefficient (K) are selected as criterions to give quantitative evaluations.

(1) Results on the Indian Pines dataset: In this dataset, 10% of the pixels are selected as the training
set and the rest of the pixels in the image are selected for testing. Experimental results on this dataset
show that nearly all the methods work. We can observe from Figure 10 that the spatial consistency is
roughly preserved by all these methods. The reason for this phenomenon is that these methods have
utilized joint spatial–spectral features. The proposed SS-RMG achieves a 1–7% advantage over the
other methods. The experimental results on this dataset demonstrate that the Random Multi-Graphs
algorithm is effective in hyperspectral image classification, especially when the number of training
samples is limited.

(2) Results on the Pavia University dataset: In this dataset, 1% of the pixels are selected as the
training set and the rest of the pixels in the image are selected for testing. All the methods show
close results. The proposed SS-RMG surpasses LBP-ELM by 6% in OA. It is evident that the proposed
SS-RMG outperforms LBP-ELM by randomly selecting subsets of features. In addition, the proposed
SS-RMG outperforms EPF-G and IFRF, which means that the application of LBP features can improve
the classification performance. Moreover, the proposed SS-RMG surpasses R-VCANet by 1.4%
of OA. This result indicates that ensemble learning models can achieve competitive performance
compared with deep learning methods in hyperspectral image classification. The results on this dataset
indicate that compared with some state-of-the-art methods, the proposed method is predominant.
The randomness in the proposed SS-RMG can be viewed as a kind of regularization technique, and it
may alleviate the phenomenon of over fitting.

(3) Results on the Baffin Bay dataset: As mentioned before, previous studies mainly focus on ground
cover classification, and a sea ice dataset is rarely considered. The Baffin Bay dataset covers a region
between the Baffin Island and the southwest coast of Greenland. In this dataset, 1% of the pixels are
selected as the training set and the rest of the pixels in the image are selected for testing. From Figure 11,
we can observe that in the results generated by EPF-G and IFRF, a lot of small white ice is classified
incorrectly into gray ice. Therefore, the classification accuracies of EPF-G and IFRF are lower than
the proposed method. From Table 6, we can observe that the proposed SS-RMG surpasses LBP-ELM
by 2.2% in OA. Furthermore, in comparison with R-VCANet, the proposed method obtains a 1.5%
improvement in OA. This indicates that the proposed SS-RMG is effective in feature extraction and
classification. The experimental results on this dataset indicate that the proposed method can achieve
good accuracy in sea ice classification by capturing the intrinsic inter-class discriminative patterns.
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(a) Ground-truth (b) EPF-G (c) IFRF

(d) LBP-ELM (e) R-VCANet (f) SS-RMG

Figure 10. Classification results by different methods on the Indian Pines dataset. (a) Ground-truth
map; (b) EPF-G; (c) IFRF; (d) LBP-ELM; (e) R-VCANet; (f) Proposed SS-RMG.

(a) Ground-truth (b) EPF-G (c) IFRF

(d) LBP-ELM (e) R-VCANet (f) SS-RMG

Figure 11. Classification results of different methods on the Baffin Bay dataset. (a) Ground-truth map;
(b) EPF-G; (c) IFRF; (d) LBP-ELM; (e) R-VCANet; (f) Proposed SS-RMG.

4.4. Analysis and Discussion

Figures 10–12 illustrates the classification results on the three datasets. The classification maps
generated by the proposed SS-RMG are obviously less noisy than the other methods, e.g., the regions
of Land in Figure 11. The visual results are consistent with those in Tables 4–6.
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(a) Ground-truth (b) EPF-G (c) IFRF

(d) LBP-ELM (e) R-VCANet (f) SS-RMG

Figure 12. Classification results of different methods on the Pavia University dataset. (a) Ground-truth
map; (b) EPF-G; (c) IFRF; (d) LBP-ELM; (e) R-VCANet; (f) Proposed SS-RMG.

The number of training samples is an important concern in hyperspectral image classification,
since the number of training samples is often limited. In some studies, 50% of all the labeled pixels
are selected as training samples [18,27]. Figure 13 shows the influences of training samples on the
Indian Pines dataset. The number of training samples is large enough to depict the tendency. SS-RMG,
R-VCANet, and IFRF present the best classification results among all the methods, therefore they
are displayed in Figure 13. These results are obtained by averaging the accuracy results of 30 runs.
When the ratio of training samples is above 10%, the classification accuracies of SS-RMG tend to be
stable. Therefore, we draw the conclusion that 10% is enough to learn a representative model for
this dataset. Moreover, it can be observed from Figure 13 that, compared with R-VCANet and IFRF,
the proposed SS-RMG can achieve good classification results with less training samples.

Some recently proposed deep learning models, such as pixel-pair features learned by deep
convolutional neural networks (CNN-PPF) [23], have attracted considerable attention. CNN-PPF is
a CNN-based classification method based on deep pixel-pair features. The pixel-pair model is used
to exploit the similarity between pixels and ensure a sufficient amount of input data to learn a large
number of parameters in the CNN. The model is comprised of ten convolutional layers and three
max-pooling layers. In the implementations of CNN-PPF, 200 labeled pixels per class are needed for
training, and the other pixels are used for testing. To compare the classification performance between
CNN-PPF and the proposed SS-RMG, we use the same number of training and testing samples as
mentioned in [23].
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Figure 13. Influence of training sample number on the Indian Pines dataset.

Table 7 lists the class-specific accuracy and OA for the Indian Pines dataset. It should be
noted that the classification result of CNN-PPF is directly obtained from Li’s work [23], and the
result of SS-RMG is obtained by the average value of running 30 times. We can observe that the
proposed SS-RMG is superior to CNN-PPF, and yields over 3% higher accuracy. Particularly for
Soybean-mintill, the class-specific accuracy of the proposed SS-RMG is about 10.4% higher than
CNN-PPF. The comparison with CNN-PPF demonstrates that graph-based ensemble learning methods
can obtain competitive classification results. Sometimes, the graph-based ensemble model can even
generate better classification results.

Table 7. Classification accuracies of CNN-PPF and the proposed SS-RMG on the Indian Pines dataset.

Class Training Testing CNN-PPF SS-RMG

Corn-notill 200 1228 92.99 95.63
Corn-mintill 200 630 96.66 95.64

Grass-pasture 200 283 98.58 99.88
Grass-trees 200 530 100.0 100.0

Hay-windrowed 200 278 100.0 99.83
Soybean-notill 200 772 96.24 93.18

Soybean-mintill 200 2255 87.80 98.23
Soybean-clean 200 393 98.98 97.64

Woods 200 1065 99.81 99.91

OA 94.34 97.54

The computational complexity of the proposed method and other closely related methods
is reported in Table 8. All experiments were implemented on the Intel Xeon E5-1620 platform.
The computational cost of the proposed SS-RMG is higher than EPF-G, IFRF, and LBP-ELM, due
to the fact that SS-RMG carries the burden of graph construction. It is worth noting that the graph
constructions are performed independently, which means that this procedure can potentially be
performed in parallel. Thus, the speed of the proposed SS-RMG can be further improved. Moreover,
compared with R-VCANet, the proposed SS-RMG is superior, which means that the speed of SS-RMG
is quite competitive to some deep learning models.

Overall, the experimental results on two popular datasets and one sea ice dataset could imply
that the proposed SS-RMG is an effective graph-based ensemble learning model for hyperspectral
image classification. It can capture the intrinsic inter-class discriminative patterns, and only limited
training samples are needed.
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Table 8. Computing time of different methods on three datasets (in seconds).

Dataset EPF-G IFRF R-VCANet LBP-ELM SS-RMG

Indian Pines 7.31 2.37 1369.43 26.79 59.98
Pavia University 19.72 15.96 2778.13 80.93 290.31

Baffin Bay 26.52 20.34 4057.32 139.20 397.47

5. Conclusions and Future Work

In this paper, we propose a spectral and spatial classification framework based on Random
Multi-Graphs for hyperspectral image classification. First, spatial features are extracted based
on LBP. Then, spatial and spectral features are stacked into high dimensional vectors. Second,
the high dimensional vectors are fed into Random Multi-Graphs for classification. By randomly
selecting a subset of features to create a graph, the proposed method can achieve satisfying
classification performance. Compared with closely related methods, the proposed method exhibits
good performance. It can be concluded that the proposed method can handle the hyperspectral
classification task with limited training samples.

Internal variability has enhanced the greenhouse gas forced Arctic sea ice decline in the past
decades [56]. The observed decline in Arctic sea ice opens shorter trade routes across the Arctic Ocean.
These routes will allow swifter deliveries between Europe and Asia. Therefore, it is important to
monitoring the sea ice along these routes for safe navigation. Hence, in the future, we will focus on
developing Arctic sea ice classification methods for hyperspectral images.
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