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Abstract— In recent years, the hyperspectral image (HSI)
classification based on generative adversarial networks (GANs)
has achieved great progress. GAN-based classification methods
can mitigate the limited training sample dilemma to some
extent. However, several studies have pointed out that existing
GAN-based HSI classification methods are heavily affected by the
imbalanced training data problem. The discriminator in GAN
always contradicts itself and tries to associate fake labels to the
minority-class samples and, thus, impair the classification perfor-
mance. Another critical issue is the mode collapse in GAN-based
methods. The generator is only capable of producing samples
within a narrow scope of the data space, which severely hinders
the advancement of GAN-based HSI classification methods.
In this article, we proposed an Adaptive DropBlock-enhanced
Generative Adversarial Networks (ADGANs) for HSI classifi-
cation. First, to solve the imbalanced training data problem,
we adjust the discriminator to be a single classifier, and it will
not contradict itself. Second, an adaptive DropBlock (AdapDrop)
is proposed as a regularization method employed in the gen-
erator and discriminator to alleviate the mode collapse issue.
The AdapDrop generated drop masks with adaptive shapes
instead of a fixed size region, and it alleviates the limitations
of DropBlock in dealing with ground objects with various
shapes. Experimental results on three HSI data sets demonstrated
that the proposed ADGAN achieved superior performance over
state-of-the-art GAN-based methods. Our codes are available at
https://github.com/summitgao/HC_ADGAN.

Index Terms— Adaptive DropBlock (AdapDrop), deep learn-
ing, generative adversarial network (GAN), hyperspectral
image (HSI) classification.

I. INTRODUCTION

BENIFITING from the advancement of Earth observa-
tion programs, hyperspectral sensors have received great
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attention over the past few years. A great number of hyper-
spectral images (HSIs) captured by spaceborne or airborne
sensors are available [1]. These images have high spectral
resolutions and abundant spatial information, which brings
opportunities to a wide variety of applications, such as urban
development [2], land cover change monitoring [3], envi-
ronmental pollution monitoring [4], and resource manage-
ment [5]. Among these applications, classification has become
one of the most critical topics in the hyperspectral application
community.

HSIs classification aims to assign a distinct label to each
pixel vector so that it is well defined by a given class.
Plenty of methods have been proposed to solve the problem.
In the early days of HSI classification, researchers mainly
focused on spectral information [6]–[8]. However, the same
object in different locations may exhibit different spectral
features, while different objects may emerge with similar
spectral features [9]. It is commonly difficult to classify
such objects by using spectral features alone. To solve the
problem, many studies combined spectral features with spatial
features to establish spectral–spatial models for HSI clas-
sification. Benediktsson et al. [2] proposed a classification
method based on mathematical morphology profiles, which
uses both the spatial and spectral features for classification.
Fauvel et al. [10] established a framework that fused the
morphological information and the original HSI. Li et al. [11]
presented a classification framework that integrates the local
binary patterns (LBPs), global Gabor features, and spec-
tral features. In [12], spatial–spectral information was trans-
posed into a sparse model for classification. Pan et al. [13]
developed the hierarchical guidance filtering to obtain a set
of spectral–spatial features from different scales, and then,
an ensemble model is established to utilize these features
simultaneously. Besides these techniques, morphological ker-
nel [14], [15], edge-preserving filter [16], extinction pro-
file [17], and superpixel segmentation [18] are also employed
to explore spectral information and spatial information for
HSI classification. The combination of spectral information
and spatial information improves the classification perfor-
mance [19]–[22]. Although these techniques have achieved
excellent performance, they are mainly based on handcrafted
descriptors. However, most handcrafted descriptors heavily
depend on prior knowledge to obtain optimal parameters,
which limits the applicability of these methods in various
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scenarios. Robust feature extraction is widely acknowledged
as a critical step in HSI classification.

Deep learning has become the most impactful developments
in artificial intelligence and big data analysis over the past
few years. It has been demonstrated that deep models are
capable of extracting the invariant and discriminant features
efficiently in computer vision and natural language processing
tasks [23]–[26]. Inspired by these flourishing techniques, deep
models have been designed to classify HSIs. Chen et al. [27]
first presented a deep learning-based HSI classification method
and employed a stacked autoencoder (SAE) as a classi-
fier. In [28], the deep belief network (DBN) is introduced
for spectral–spatial information exploration. Pan et al. [29]
proposed a vertex component analysis network (VCANet),
which takes the physical characteristics of HSIs into account.
VCANet is capable to exploit discriminative features when
training samples are limited.

Recently, convolutional neural networks (CNNs) have been
widely used in HSI classification. CNNs make use of regional
connections to extract contextual features and have shown out-
standing classification performance. In [30], spectral features
are extracted via 1-D CNN, and spatial features are exploited
via 3-D-CNN. Then, spectral and spatial features are combined
for classification. Chen et al. [31] developed a 3-D-CNN HSI
classification model, in which L2 regularization is used in
the training procedure to mitigate the overfitting problem.
Zhong et al. [32] presented an end-to-end CNNs that take the
3-D cube as input data. Residual learning is introduced to
solve the exploding gradient problem. In [33], Gabor filters are
combined with convolutional filters to alleviate the overfitting
problem in CNN training. Inspired by the inception mod-
ule [34], Gong et al. [35] proposed a CNNs with multiscale
convolution. The multiscale filter banks enrich the representa-
tion power of the deep model. Ma et al. [36] designed an end-
to-end deconvolution network with skip architecture for spatial
and spectral features’ extraction. The network is capable to
recover the lost information in the pooling operation of CNN
via unpooling and deconvolution layers.

CNN-based methods have achieved tremendous progress
in HSI classification. However, the performance of these
techniques heavily depends on the number of training samples.
Commonly, it is a challenging task to collect lots of training
samples from HSIs. This problem can be alleviated by data
augmentation. Cropping, horizontal flipping, and generative
model are typical data augmentation techniques. Recently,
the generative model has drawn a lot of attention since it is
able to generate high-quality samples to alleviate the overfit-
ting problem. Goodfellow et al. [37] designed the generative
adversarial network (GAN), which is comprised of a generator
G and a discriminator D. The generator G captures the data
distribution, while D judges that whether a sample comes from
G or from the training data. The generator G can be considered
as a regularization method that can effectively alleviate the
overfitting problem to a great extent.

Researchers have made efforts to design GAN-based mod-
els to alleviate the limited high-quality sample problem.
Zhan et al. [38] proposed a semisupervised framework based
on 1-D-GAN. After that, Zhu et al. [39] proposed a 3-D-GAN

for HSI classification. The spatial information is taken into
consideration, and a softmax classifier is employed in the
discriminator D to auxiliary classification. Feng et al. [40]
proposed a multiclass GAN for HSI classification. Two gen-
erators are designed in multiclass GAN to generate HSI
patches, and a discriminator is devised to output multiclass
probabilities. Zhong et al. [41] integrated GAN and condi-
tional random field (CRF) together, where dense CRFs impose
graph constraints on the discriminators of GAN to refine the
classification results.

Although these GAN-based models have achieved satisfying
performance over their contemporary baselines, there still exist
two drawbacks over HSI classification, which are urgently
needed to be solved.

The first challenge is the imbalanced training data. The
accuracy of classification is likely to deteriorate when available
training samples are not uniformly distributed among different
classes. However, the imbalanced training data problem is
fundamental in HSIs since objects with different sizes present
in a typical scene [42]. In Zhu’s work [39], auxiliary classifier
GAN (ACGAN) [43] is employed for HSI classification.
In ACGAN, the discriminator has two outputs: one to discrim-
inate real and fake samples, and the other to classify samples.
It seems that ACGAN is capable of producing samples of
a specific class. In practice, it is observed that two loss
functions of the discriminator turnout to be flawed when
generating the minority-class samples. The reason for this
phenomenon is that when minority-class samples are passed to
the discriminator, they are likely to be assigned the fake label.
Therefore, the discriminator intends to associate a fake label
to the minority-class samples. At this point, the generators
produce samples that look real but not represent the minority
class. The quality of generated samples is deteriorated, and
hence, the classification performance is impaired.

Another critical issue is mode collapse. The generator fools
the discriminator by only producing data from the same data
mode [44]. It leads to a weak generator that can generate
samples within a narrow scope of the data space. Therefore,
the generated samples are too similar for the model to learn the
true data distribution, and the model can hardly learn the full
data distribution. The model collapse can be considered as a
consequence of overfitting to the feedback of the discriminator.
In a disparate line of work, DropBlock [45] was designed
in CNNs to alleviate overfitting. In DropBlock, features in a
square mask from one feature map are dropped together during
training. It is demonstrated that DropBlock can learn more
spatially distributed representations. However, when dealing
with objects with various shapes, the fixed square masks are
inflexible. We argue that if irregularly shaped masks are taken
into account, the mode collapse problem can be alleviated.

To tackle the aforementioned limitations of GAN-based
classification methods, we established an Adaptive
Dropblock-enhanced GANs (ADGANs) for HSI classification.
On the one hand, considering the contradiction between
the loss functions of the discriminator in ACGAN,
the discriminator in ADGAN is adjusted to be one
single output that returns either the specific class label
or the fake label. The generator is trained to avoid the
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fake label and match the desired class labels. Since the
discriminator is now defined as one single objective, it will
not contradict itself. On the other hand, we propose adaptive
DropBlock (AdapDrop) as a regularization method used in
the generator and the discriminator. Instead of dropping a
fixed size region, the AdapDrop generated drop masks with
adaptive shapes, relaxing the limitations of DropBlock in
dealing with objects with various shapes.

To validate the effectiveness of the proposed method, exten-
sive experiments are conducted on three data sets. Experi-
mental results demonstrate that the proposed ADGAN yields
better performance than state-of-the-art GAN-based methods.
In summary, our contributions are threefold.

1) We develop a novel GAN-based HSI classification
model that contains a single output in discrimina-
tor. The contradictions in ACGAN when dealing with
minority-class samples are mitigated.

2) For the purpose of alleviating the mode collapse prob-
lem, we propose the AdapDrop for regularization. The
AdapDrop generates masks with adaptive shapes, which
can boost the classification performance.

3) We conducted extensive experiments on three
well-known hyperspectral data sets under the condition
of limited training samples to validate the effectiveness
of the proposed method. The experimental results
achieve competitive results compared with other
state-of-the-art classification methods.

The rest of this article is organized as follows. In Section II,
the basic concepts of ACGAN and DropBlock are briefly
reviewed. The scheme of the proposed method and its compo-
nents are introduced in Section III. Experimental results and
analysis are presented in Section IV. Finally, conclusions are
drawn in Section V.

II. BACKGROUND

A. Generative Adversarial Networks

In recent years, GANs provide a solution to estimate input
data distribution and correspondingly generate synthetic sam-
ples [37]. GAN is comprised of two parts: the generator G
and the discriminator D. The generator G attempts to learn the
distribution of real data and generate data that subject to this
distribution. The discriminator D judges whether the input is
real or fake. The generator G takes a random noise vector z as
input and outputs an image Xfake = G(z). The discriminator D
receives a real image or a synthesized image from G as inputs
and outputs a probability distribution P(S|X) = D(X). The
discriminator D is trained to maximize the log-likelihood it
assigns to the correct source as follows:
L D = E[log P(S = real|Xreal)]

+ E[log P(S = fake|Xfake)]. (1)

The generator G is trained to minimize the following
likelihood:

LG = E[log P(S = fake|Xfake)]. (2)

When training GAN, an alternating optimization technique
is employed. Especially, D is optimized by maximizing L D

Fig. 1. Architecture of ACGAN employed in [39] for HSI classification.

with G fixed in one iteration. After that, G is optimized with
minimizing LG with D fixed. In such adversarial training,
the discriminator D and the generator G promote each other.
After many iterations, G captures the distribution of real data.
At the same time, the capability of D to distinguish real data
and fake data is enhanced.

B. Auxiliary Classifier GANs

In naive GAN, the discriminator only judges whether the
input samples are real or fake. Therefore, they are not suitable
for multiclass image classification. To tackle the limitations of
naive GAN, Odena et al. [43] proposed ACGAN. In ACGAN,
the discriminator D is a softmax classifier that can output
multiclass label probabilities.

The architecture of ACGAN employed in [39] is illustrated
in Fig. 1. The generator G accepts the class label c as
input. The real data with the corresponding label and the
data generated by G are regarded as the input of D. The
discriminator D has two outputs: one to discriminate the real
and fake data and the other to classify input in terms of its
class c. The loss function of ACGAN is comprised of two
parts: the log-likelihood of the right source of input LS and
the log-likelihood of the right class labels LC . The LS and
LC are computed as

LS = E[log P(S = real|Xreal)]
+ E[log P(S = fake|Xfake)] (3)

LC = E[log P(C = c|Xreal)]
+ E[log P(C = c|Xfake)]. (4)

During training, the generator G is optimized to maximize
LC − LS , and the discriminator D is optimized to maximize
LS + LC . Therefore, the generator G can be conditioned to
draw a sample of the desired class.

C. DropBlock

Most current deep models are inclined to suffer from
overparameterization and, therefore, give rise to the overfitting
problem. In this regard, regularization methods are harnessed
to mitigate this issue. To date, dropout [46] is a widely
used regularization method and has been proven to be rather
effective for fully connected layers. However, features in
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Fig. 2. Framework of ADGAN for HSI classification.

convolutional layers are highly spatially correlated. Dropout
becomes less effective since it does not take image spatial
information into account.

Recently, Ghisasi et al. [45] proposed DropBlock that is
particularly effective to regularize the convolutional layers.
Rather than dropping out random units, DropBlock drops
contiguous regions from a feature map in the convolutional
layer. It can be considered as a form of structured dropout.
It is demonstrated that employing DropBlock in convolutional
layers and skip connections effectively improves the classifi-
cation performance.

III. METHODOLOGY

A. Framework of the Proposed ADGAN

The framework of the proposed ADGAN is illustrated
in Fig. 2. The input HSI contains hundreds of bands, and there
is a lot of redundancy among these spectral bands. It is rather
difficult to obtain a robust generator G since the generator
can hardly imitate the real data when high redundancy exists.
Therefore, the number of spectral bands of the input HSI
is reduced to three components by PCA [47]. The spectral
information can be condensed to a suitable scale by PCA.
This operation is a nontrivial step since PCA can not only
dramatically reduce the computational complexity but also
contribute to training a robust generator G.

From Fig. 2, it can be observed that the input of the
generator G includes both noise z and class labels c. The
discriminator D receives the image patches Xreal with labels
c and some fake patches Xfake = G(z, c). It should be noted
that in the proposed ADGAN, the discriminator D has only
one single output that returns either a specific class c or
the fake label. Then, the generator G is trained to generate
image patches that match the desired class label. To this end,
the discriminator D is trained to maximize the log-likelihood
as follows:
L D = E[log P(C = c|Xreal)]

+ E[log P(C = f ake|Xfake)]. (5)

The generator G is trained to maximize the log-likelihood as
follows:

LG = E[log P(C = c|Xfake)]. (6)

The first term of L D encourages the discriminator D to
assign a true label for real samples, and the second term
expects to assign a fake label to the generated samples. On the
contrary, the generator G expects to draw a sample of the
desired class. By adversarial learning, the generator G captures
the real data distribution of the desired class.

As mentioned earlier, the discriminator in Zhu’s work [39]
has two outputs: one to discriminate the real and fake data,
and the other to classify the input in term of its class c. In the
training phase, the generator aims to draw images belonging
to class c. Therefore, the parameters of the generator are
optimized to maximize the superposition of two components.
The first is the log-likelihood of generating an image that
the discriminator considers real. The second component is the
log-likelihood of generating an image that the discriminator
considers it to be class c. However, there exists a contradiction
between two components when dealing with the minority
class. Especially, when a generated minority-class image is
fed into the discriminator, it is likely to be judged as a
fake image since the minority-class images are scarce in the
training set. To optimize its loss function, the discriminator
prefers to associate a fake label to the minority-class images.
Then, the two components of the generator will contradict
each other, and two components can hardly be optimized at
once. This phenomenon deteriorates the quality of generated
images, which severely limits the performance of GAN-based
approaches for HSI classification. To solve this problem,
we proposed the ADGAN that alleviates the contradiction in
ACGAN and achieves the balance in training samples to some
extent.

In the proposed ADGAN, the discriminator D has one
output that returns either a specific class c or the fake label,
as shown in Fig. 2. The discriminator D is trained to associate
the real samples with their class label c. Meanwhile, D also
tries to associate the samples generated by G with the fake
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label. On the contrary, the generator G is trained to avoid
the fake label and match the generated samples to the desired
class. By doing so, the balance of training samples can be
balanced to some extent. Besides, since the discriminator in
ADGAN is now defined as one single objective rather than a
combination of two objectives, it will not contradict itself.

In ADGAN, the network extracts the spectral and spatial
features simultaneously. The input hyperspectral data are con-
densed by PCA, and only three components are reserved.
Through PCA, an optimal representation of the input HSI is
achieved, and the computational burden is also dramatically
reduced. From Fig. 2, we can observe that the generator G
accepts random Gaussian noise z as input. The noise z is trans-
formed to the same size as the real input data with three bands
in the spectral domain. After that, the discriminator D accepts
the generated fake samples together with the real samples as
input. The output of D indicates the probability that the input
sample belongs to class c or fake. After many iterations, both
G and D achieve optimized results. Especially, G can generate
fake data that subject to the distribution of real data, while
D can hardly discriminate it. The competition between both
networks can promote HSI classification performance. The key
idea of ADGAN lies in restoring the balance of data set, and
through the design of novel adversarial objective functions,
the contradiction in ACGAN can be alleviated.

B. Structured Dropout With Attention Mechanism:
Adaptive DropBlock

In the proposed ADGAN, G and D are both in the
form of convolutional networks. Pooling layers are replaced
with strided convolutions. In addition, batch normalization
is employed in both the G and D. To further improve the
classification performance, we proposed AdapDrop as the reg-
ularization method to enhance the spatially correlated feature
representations.

Deep neural networks generally suffer from overparameter-
ization and, thus, give rise to the overfitting problem. Regular-
ization methods, such as batch normalization and dropout, are
harnessed to mitigate the problem. In this article, the proposed
ADGAN is comprised of two convolutional networks, which
makes it more complex to regularize.

Many regularization methods have been proposed to allevi-
ate the overfitting problem, such as DropBlock [45], Drop-
Path [48], and DropConnect [49]. DropBlock is one of
the most commonly used regularization methods in CNNs.
It operates on the feature maps, and then, the units in
a random contiguous region of feature maps are dropped
together. As DropBlock discards features in a correlated area,
the remaining semantic information will be used to fit the
training data. However, DropBlock backfires when it drops
overmuch information in the feature map since it drops the
whole blocks with a fixed shape, which may contain essential
features for training, as shown in Fig. 3.

To mitigate the drawback of DropBlock, we propose Adap-
Drop that is a structured regularization method with an atten-
tion mechanism. AdapDrop first randomly selects some blocks
in the feature map. Then, it produces an adaptive mask with

Fig. 3. Illustration of dropout, DropBlock, and AdapDrop. (a) Input image.
(b) Dropout. (c) DropBlock. (d) Proposed AdapDrop. The regions with
meaningful information are marked by blue squares, and dropped operations
are marked by black triangles. Dropout can hardly utilize spatial information.
DropBlock takes advantage of the spatial information, but it breaks the
meaningful semantic information for learning. The proposed AdapDrop drops
pixels based on the activations of the input and improves the model’s capability
of focusing on nontrivial spatial information.

Fig. 4. Illustration of the proposed AdapDrop. (a) Similar to DropBlock, two
elements are sampled from each feature map. (b) Every element is expanded
to a b_size×b_size block. (c) In each block, the largest kth percentile elements
are dropped.

irregular shapes in the selected blocks by dropping the top-
kth percentile elements. The top-kth percentile elements are
chosen according to the values in the feature map. Due to
the continuity of image pixel values, the neighboring pixels
in the feature map have similar values. Hence, when we
drop the top-kth percentile elements, it is usually expressed
as an irregular shape according to the spatial characteristics
of the target object, such as the roof of a building and
lawn garden. Therefore, the AdapDrop effectively removes
maximally activated regions and encourages the network to
consider less prominent features.

The three phases of AdapDrop are shown in Fig. 4. An adap-
tive mask is applied to the feature map and scale the output.
The AdapDrop algorithm is shown in Algorithm 1. It has three
parameters: b_size, k, and γ . b_size is the size of the mask
block, and k denotes that the top-kth percentile elements in the
mask block will be dropped. γ controls the number of features
to drop, and the computation of γ can be found in [45].
The current feature map A(n) is first normalized, and a new
feature map A�(n) is generated. A set of pixels are sampled
with the Bernoulli distribution. For each position Mi, j , create
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Algorithm 1 Workflow of AdapDrop

Input: Feature of the current layer A(n), b_si ze, γ , k
Output: Feature of the next layer A(n+1)

1: Normalize the feature:

A
�(n) = A(n) − A(n)

min

A(n)
max − A(n)

min

2: Randomly sample some pixels: Mi, j ∼ Bernoulli(γ )
3: For each Mi, j , create a block centered at Mi, j . The size

of the block is b_si ze × b_si ze. In each block, set the
top-kth percentile elements to be zero, and set the rest
elements to be one.

4: Apply the mask: A
�(n) = A

�(n) × M
5: Scale the output feature:

A(n+1) = A
�(n) × count(M)/count_ones(M)

TABLE I

IMPLEMENTATION DETAILS OF THE PROPOSED ADGAN

a spatial square block centered at Mi, j . The size of the block is
b_size×b_size. In each block, the top-kth percentile elements
are set to be zero, and the rest elements are set to be one.
Next, apply the mask, and scale the output as

A(n+1) = A�(n) × count(M)/count_ones(M). (7)

count(M) denotes the number of elements in the masks, and
count_ones(M) denotes the number of one in the masks.

C. Implementation Details of the Proposed ADGAN

Table I shows the implementation details of the proposed
ADGAN. The generator G and discriminator D are CNNs
with five convolutional layers. The size of the input noise is
100 × 1 × 1. The generator G converts the inputs to fake
samples with a size of 64 × 64 × 3. In the generator G,
the AdapDrop is employed in the second convolutional layer,
while the AdapDrop is employed in the fourth transposed
convolutional layer in the discriminator D.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first describe the data sets used in
our experiments. Then, an exhaustive investigation of several
important parameters of the AdapDrop is presented. Besides,

Fig. 5. Salinas data set. (a) False-color composite. (b) Ground reference
map.

Fig. 6. Indian Pines data set. (a) False-color composite. (b) Ground reference
map.

we tested the impact of different regularization methods on
classification results in the network. Next, the comparisons
with five closely related HSI classifiers are provided After
that, we compared the running time of different classification
methods. Finally, we visualized the generated samples to show
the advantage of ADGAN.

A. Data Sets’ Description

To evaluate the performance of the ADGAN on HSI classi-
fication, three representative HSI data sets are used, including
the Salinas, Indian Pines, and Pavia University data sets.

1) The Salinas data set was captured by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor.
The size of the image is 512 × 217 pixels. The data
set is comprised of 204 spectral bands. Some low
signal-to-noise ratio (SNR) bands are removed. The data
set has a high spatial resolution of 3.7 m per pixel.
The false-color composite image (bands 50, 170, and
190) and the corresponding ground reference map are
illustrated in Fig. 5.

2) The Indian Pines data set is a mixed vegetation site
in Northwestern Indiana, and it was collected by the
AVIRIS sensor. The size of the data set is 145 ×
145 pixels. It is comprised of 220 spectral bands in
the wavelength range of 0.4–2.5 μm. The false-color
composite image and the ground reference map are
shown in Fig. 6. It should be noted that the water
absorption bands are removed in our implementations.
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Fig. 7. Pavia University data set. (a) False-color composite. (b) Ground
reference map.

TABLE II

SAMPLES’ DISTRIBUTION FOR THE SALINAS DATA SET

3) The Pavia University data set was acquired by
the Reflective Optics System Imaging Spectrome-
ter (ROSIS) in Northern Italy in 2001. The data set
converts nine urban land-cover types. The size of the
data set is 610 × 340 pixels, and the resolution of the
image is 1.3 m per pixel. The data set is comprised
of 103 spectral bands in the wavelength range from
430 to 860 nm. Fig. 7 illustrates the data set and the
corresponding ground reference map.

For all three data sets, the labeled samples were split into
two parts: the training set and the test set. Because of the rel-
atively higher computational complexity of the GANs, we try
to control the number of training samples to ensure stable
experimental results. After numerous experiments, we found
that randomly selecting 300 training samples on the Salinas
data set, 1000 training samples on the Indian Pines data set,
and 1000 training samples on the Pavia University data set can
ensure stable results. For the Salinas data set, the number of
training and test samples for each class are listed in Table II.
For the Indian Pines and Pavia University data sets, sample

TABLE III

SAMPLES’ DISTRIBUTION FOR THE INDIAN PINES DATA SET

TABLE IV

SAMPLES’ DISTRIBUTION FOR THE PAVIA UNIVERSITY DATA SET

distribution is listed in Tables III and IV, respectively. The
training set adjusts the parameters during the training process
by testing the classification accuracies and the losses of the
temporary model generated during training. The network with
the lowest loss is selected for testing. In the test process,
all the test samples in the data set are used to estimate the
capability of the trained network. Three evaluation criteria,
including overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (κ) are presented for all test samples.

B. Parameter Analysis

1) Analysis of b_size: The size of block b_size in Adap-
Drop is an important parameter that affects the classification
accuracy. The contextual information in classification is sen-
sitive to neighborhood noise. Fig. 8 shows the classification
performance on three data sets under a different b_size. In our
implementations, b_size varies from 3 to 11. We can observe
that when b_size increases from 3 to 7, the classification
accuracy improves since more contextual information is taken
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Fig. 8. Relationship between the classification accuracy and b_size on three
data sets.

Fig. 9. Relationship between the classification accuracy and k on three data
sets.

into account. However, when the larger block size is selected,
continuous blank areas affect the robust training of the net-
work. When b_size = 7, the best accuracy is achieved.
Therefore, b_size is set to 7 in the following experiments.

2) Analysis of k: The parameter k denotes that the top-kth
percentile elements in the mask block will be dropped, and it
is a critical parameter in AdapDrop. We evaluate the classifica-
tion performance by take k = 30, 35, 40, and 45, respectively.
Fig. 9 illustrates the influence of k on classification accuracy
on three data sets. It can be seen that when k = 40, the OA
achieves the best performance. When smaller k is selected,
the dropped features can hardly achieve the goal of mitigating
overfitting. When it gets bigger, the network dropped too many
features, and the network inclines to learn incorrect represen-
tations provided by the irrelevant background. Therefore, k is
chosen as 40 in our following experiments.

3) Analysis of the Size of the Patch: The size of the
input image patch is an important parameter. As illustrated
in Fig. 10, the input image patches are set to 11, 15, 19, 23, 27,
and 31, respectively. It can be observed that the classification
accuracy sharply increases when the patch size ranges from
11 to 27 on three data sets. When patch size grows larger
than 27, the classification accuracy tends to decrease. It is
due to the reason that a larger image patch takes pixels of
different classes into account, and hence, some negative effects
are incurred. In the meanwhile, valuable spatial information is
not exploited effectively when the patch size is rather small.
Therefore, the extracted features are not representative of the

Fig. 10. Classification performance versus different input image patch sizes
on three data sets.

Fig. 11. Classification performance versus network depths on three data sets.

central pixel. Therefore, in our implementations, the input
image patch size is set to 27 × 27 pixels on three data sets.

4) Analysis of Network Depth: It is widely acknowledged
that the network depth of current deep learning-based methods
is getting deeper and deeper. However, when training samples
are relatively limited, the parameters in deeper models can
hardly be optimized, and the model is unable to work well.
As illustrated in Fig. 11, when the network depth is set
to 5, the best performance is obtained on three data sets.
It is reasonable that deeper architectures may suffer from
the exploding gradients problem. Especially, error gradients
accumulate quickly and, thus, result in an unstable network.
Hence, the network depth is set to be 5.

C. Comparison With Different Regularization Methods

In this section, we empirically investigate the effectiveness
of the proposed AdapDrop for HSI classification. Dropout
and DropBlock are employed for comparison in extensive
experiments. As shown in Fig. 12, the proposed AdapDrop
has a superior performance compared with dropout and Drop-
Block. Among these methods, dropout is less effective since
it randomly drops separate pixels in the feature map, and the
dropped information can be easily retrieved through neighbor-
hood pixels. DropBlock removes the entire blocks, and the
network’s learning capabilities may be affected. The proposed
AdapDrop removes highly informative regions in the feature
map, and the network can effectively learn robust features of
the ground objects in HSI classification.
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Fig. 12. Classification accuracy by employing different regularization
methods on three data sets.

D. Classification Results on Three Data Sets

In order to verify the effectiveness of the proposed ADGAN,
we compare it with five closely related methods, such as
the random forest (RF) [6], contextual SVM (CSVM) [50],
CNN with extinction profiles (EP-CNN) [51], spectral–spatial
ResNet (SS-ResNet) [52], and 3-D-ACGAN [39]. In order
to ensure a fair comparison, all the methods use default
parameters and the same proportion of training sets. All
the experimental results are obtained by running ten times
independently with a random division for training and test
sets.

RF investigates an RF of binary classifiers as a means of
increasing the diversity of hierarchical classifiers. N f is set
to be 20, and 100 trees are grown for each experiment. For
CSVM, both local spectral information and spatial information
in a reproducing kernel Hilbert space are jointly exploited.
A neighborhood of 9 × 9 pixels is employed, and default
parameters of SVM are used as mentioned in [50]. EP-CNN
fuses the hyperspectral and light detection and ranging-derived
data using extinction profiles and deep learning. A neighbor-
hood with a size of 27 × 27 pixels is considered. α = 3 and
s = 7 are employed as described in [51]. The SS-ResNet
combines spatial information and spectral information, and it
takes advantage of residual learning. A neighborhood with a
size of 11 × 11 is employed. In addition, 300 epochs and
the Adam optimizer are used. For 3-D-ACGAN, the source
code provided by Prof. Chen is used, and default parame-
ters are chosen as mentioned in [39]. Especially, 64 × 64
neighborhood of each pixel is used, and the input images
are normalized into the range [−0.5, 0.5]. The size of the
minibatch is 100, and Adam optimizer is employed. For data
preprocessing, three components are utilized as inputs. The
generator G and discriminator D are designed with five con-
volutional layers. The size of the input noise is 100×1×1, and
the generator converts the inputs to fake samples with a size of
64 ×64 ×3. In order to fairly compare the proposed ADGAN
with 3-D-ACGAN, both methods have similar architectures
except for the output of the discriminator.

Both visual and quantitative analyses are provided in our
experiments. For visual analysis, the classification maps gen-
erated by different methods are illustrated in figure form. For

Fig. 13. Visualized results of different classification methods on the Salinas
data set. (a) Result by RF [6]. (b) Result by CSVM [50]. (c) Result by
EP-CNN [51]. (d) Result by SS-ResNet [52]. (e) Result by 3-D-ACGAN [39].
(f) Result by the proposed ADGAN.

quantitative analysis, the classification maps are illustrated in
tabular form.

1) Results on the Salinas Data Set: Table V lists the
corresponding evaluation criteria of six algorithms. The first
16 rows illustrate the results of each class, and the last
three rows show the OA, AA, and Kappa coefficients.
The best classification results are emphasized by bolding.
As shown in Table V, deep learning-based methods, EP-CNN,
SS-ResNet, 3-D-ACGAN, and ADGAN, are superior to
RF and CSVM because of the hierarchical nonlinear fea-
ture extraction. Compared with EP-CNN and SS-ResNet,
3-D-ACGAN improves the classification performance with
the assistance of generated samples. Among the six methods,
ADGAN achieves the best classification results in most cases
since it not only generated high-quality samples but also
alleviated the drawback of ACGAN as mentioned earlier.
In addition, compared with other methods, ADGAN improves
at least 1.11% in OA, 0.79% in AA, and 0.41% in Kappa.
Fig. 13 shows the classification maps of different methods
on the Salinas data set. As illustrated in Fig. 13(a)–(d), RF,
CSVM, EP-CNN, and SS-ResNet misclassify many samples
at the boundary of different classes. Compared with these
methods, 3-D-ACGAN achieves better classification results
on majority classes because of data augmentation. Com-
pared with 3-D-ACGAN, the proposed ADGAN performs
better in minority classes, for example, Lettuce_romaine_4wk,
Lettuce_romaine_6wk, and Lettuce_romaine_7wk. It is
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Fig. 14. Visualized results of different classification methods on the Indian
Pines data set. (a) Result by RF [6]. (b) Result by CSVM [50]. (c) Result by
EP-CNN [51]. (d) Result by SS-ResNet [52]. (e) Result by 3-D-ACGAN [39].
(f) Result by the proposed ADGAN.

demonstrated that the proposed ADGAN achieves the best
performance on the Salinas data set.

2) Results on the Indian Pines Data Set: The statistical clas-
sification results on the Indian Pines data set are summarized
in Table VI, and Fig. 14 illustrates the classification results
of different methods. As can be observed from Table VI,
SS-ResNet, 3-D-ACGAN, and ADGAN are superior to RF,
CSVM, and EP-CNN by introducing attention mechanism or
extra generated training samples. For minority classes, such as
Alfalfa, Grass-pasture-mowed, Oats, and Stone-Steel-Towers,
the classification performance of the proposed ADGAN is
better than 3-D-ACGAN. It is demonstrated that ADGAN has
better classification performance when handling minority class
samples on this data set. Among all these methods, ADGAN
obtains the best statistical results in terms of the OA, AA, and
Kappa. As shown in Fig. 14(a)–(d), many samples belonging
to the Soybean-clean and Building-Grass-Trees are falsely
assigned the neighboring labels by RF, CSVM, EP-CNN,
and SS-ResNet. Compared with them, ADGAN achieves bet-
ter region uniformity in the Soybean-notill class. Moreover,
ADGAN obtains better performance in the boundary pixel
classification of the Stone-Steel-Towers, which is limited in
the training set. It is evident that the proposed ADGAN obtains
the best performance on the Indian Pines data set.

3) Results on the Pavia University Data Set: The quantita-
tive criteria of different methods on the Pavia University data
set are shown in Table VII. The corresponding classification
maps on the data set are illustrated in Fig. 15. As can be
observed in Table VII, the Gravel and Self-Blocking Bricks
classes are misclassified by RF, CSVM, EP-CNN, and SS-
ResNet. Compared with these methods, 3-D-ACGAN and
ADGAN obviously improve the classification performance
by generating high-quality training samples. When handling
the minority classes, such as Painted metal sheets, Bitu-
men, and Shadows, the proposed ADGAN performs better
than 3-D-ACGAN. From visual comparisons, the proposed

Fig. 15. Visualized results of different classification methods on the
Pavia University data set. (a) Result by RF [6]. (b) Result by CSVM [50].
(c) Result by EP-CNN [51]. (d) Result by SS-ResNet [52]. (e) Result by
3-D-ACGAN [39]. (f) Result by the proposed ADGAN.

ADGAN obtains the best classification results. The proposed
ADGAN surpasses 3-D-ACGAN by 1.13%, 1.20%, and 1.25%
in terms of OA, AA, and Kappa. As shown in Fig. 15(a)–(d),
there are many noisy scattered points in the Bare soil and
Gravel in the classification results by RF, CSVM, EP-CNN,
and SS-ResNet. Compared with them, 3-D-ACGAN and
ADGAN provide better results with little noise. It should
be noted that, when handling the minority classes, such as
Bitumen and Shadows, ADGAN performs better and is the
closest to the ground truth map. The experimental results
on this data set demonstrate that the ADGAN exhibits good
classification performance by capturing the intrinsic interclass
discriminative features.

From visual comparisons, the classification results by the
proposed ADGAN are less noisy than the other methods.
The quantitative criteria in Tables V–VII are consistent
with the visual comparisons. It should be noted that deep
learning-based methods generally perform better than shal-
low architectures. Especially, the GAN-based methods indeed
obtain better classification results when the training samples
are limited. The proposed ADGAN is capable of achieving
better classification accuracy than 3-D-ACGAN in minority
class classification due to the newly designed discriminator
and AdapDrop.

E. Investigation on Running Time

Table VIII lists the running time of different classification
methods on three data sets. Compared with RF and CSVM,
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TABLE V

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT CLASSIFICATION METHODS ON THE SALINAS DATA SET

TABLE VI

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT CLASSIFICATION METHODS ON THE INDIAN PINES DATA SET

deep learning-based methods cost more training time because
of the construction of a deep network. 3-D-ACGAN and
ADGAN are time-consuming on the training time because
adversarial learning needs more time to converge. For the

test time, the proposed ADGAN has an obvious advantage
than EP-CNN and SS-ResNet because of the simpler network
structure of the discriminator. Furthermore, we can observe
that ADGAN has a competitive performance compared with
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TABLE VII

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT CLASSIFICATION METHODS ON THE PAVIA UNIVERSITY DATA SET

TABLE VIII

RUNNING TIME OF DIFFERENT CLASSIFICATION

METHODS ON THREE DATA SETS

3-D-ACGAN in test time. It means that the proposed ADGAN
is capable of real-time applications.

F. Visualization of Adversarial Samples

In the visualization experiment, some representative fake
samples generated by the 3-D-ACGAN and the proposed
ADGAN on the Salinas data set are illustrated in Fig. 16.
As can be observed, the proposed ADGAN can generate
high-quality samples that have similar structures compared
with the real image samples. On the contrary, 3-D-ACGAN
sometimes fails to generate good samples for the minor-
ity class and collapse toward learning the basic structures
of the real samples. As mentioned earlier, because of the
self-contradiction in 3-D-ACGAN’s discriminator, the gener-
ator G prefers to generate samples belonging to the majority

Fig. 16. Representative samples generated for the minority classes on the
Salinas data set. (a) Real samples. (b) ADGAN. (c) 3-D-ACGAN.

class. Therefore, the performance of 3-D-ACGAN in generat-
ing minority class samples is affected. The proposed ADGAN
models the classification task and the discrimination task into
one single objective. Hence, the mode collapse issue can be
alleviated to some extent. The proposed ADGAN is superior in
adversarial learning when aiming at the generation of minority
class samples and can be employed to improve the HSI
classification accuracy.

V. CONCLUSION

In this article, an AdapDrop-enhanced framework for HSI
classification is proposed. The proposed ADGAN can effec-
tively alleviate the following two problems: 1) the imbalanced
training data in HSI and 2) the mode collapse problem in
GAN-based classification methods. First, the discriminator is
adjusted to be a single output that returns either the fake label
or the specific class label. The discriminator will not con-
tradict itself when training samples are imbalanced. Second,
AdapDrop is proposed as a regularization method to mitigate
the mode collapse problem. Instead of dropping a fixed size
region, the proposed AdapDrop generates drop masks with
adaptive shapes, which can better deal with ground objects
with various shapes. To evaluate the proposed framework,
extensive experiments are performed on three hyperspectral
data sets. The results show that the proposed ADGAN can
achieve better performance compared with the state-of-the-art
baselines.
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In the future, we plan to extend our work in two directions.
First, several self-attention networks will be investigated to
improve classification performance. In addition, more regu-
larization techniques will be explored to alleviate the mode
collapse problem and, therefore, further enhance the classifi-
cation performance.
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